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and economic aspects of hazards determine vulnerability and impact of an event, the next 

logical step would seem to be the development of classification systems that address 

those factors.  Classifications for natural disasters, such as the Fujita Scale for tornadoes 

and the Saffir-Simpson hurricane scale, focus on the physical properties of the event, not 

the impact on a community.  Pre-event vulnerability to a natural hazard is determined by 

many factors, such as age, race, income and gender, as well as infrastructure such as 

density of the built environment and health of the industrial base.  The behavior of 

residents in the community, construction quality of shelters and warning system 

effectiveness also affect vulnerability.  If pre-event vulnerability is to be determined by 

such factors, post-event impact should, at least in part, be as well. The goal of this 

research was to develop the Tornado Impact-Community Vulnerability Index (TICV) that 

utilizes variables such as the number of persons killed, economic impacts and social 

vulnerability to describe to the level of impact a tornado event has on community.  As 

tornadoes that strike unpopulated areas are often difficult to classify, even in the 

traditional sense, the TICV will take into consideration only events that strike 

communities with defined political boundaries, or “places” according to the U.S. Census 

Bureau.  By assigning a rating to the impact, this index will allow the severity of the 

storm to be understood in terms of its effect on a specific community and hence its 

impact, rather than an physically-based rating that gives only a broad, general indication 

of its physical strength. 
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CHAPTER 1 - Introduction 

A single moment can retroactively flood an entire life with meaning.  
Viktor Frankl 

 

When the public tries to understand the severity of a particular hazard, it is useful 

to provide a measurement that expresses the movement away from everyday life, as 

recovery and adjustments to extreme events is not a part of the routine of a community 

(Kates 1996).  By creating an index that describes impact on a community, this research 

aims to fill a perceived gap in how people gain an understanding of how tornado events 

impact communities.   Voss and Wagner (2010) noted two topics that need to be 

addressed in terms of a community‟s adjustment to a disaster event:  

1. The severity of the destruction caused by the event; 

2. The spatial extent of disruption in the community. 

 

Regarding the second topic, the spatial extent of a tornado‟s track (length and 

width) was not a part of the calculation process used herein although the intersection with 

a particular community was, representing the impact of an event as being distributed 

across the community as a whole.  According to Form et al. (1956, 180), “Disasters 

usually affect entire communities or large segments of communities and are present when 

the established social systems of the community abruptly cease to operate.”  Voss and 

Wagner‟s first consideration, the severity of the damage coupled with the extent of 

disruption – described here as impact – is central to this research, and is a major criterion 

incorporated into the index and category scheme developed. 



 2 

People strive to understand the physical world, including extreme events 

occurring within it.  Scales used to measure extreme geophysical events in terms of 

strength have in large part focused on the physicality of the event.  For example, the 

Richter scale (ML) (Boore 1989) and moment-magnitude scale (MMS or MW) (Singh and 

Havskov 1980) both provide a quantitative rating that allows people to understand the 

power of an earthquake based on physical characteristics.  But like the Enhanced Fujita 

Scale (EFS), which estimates physical strength of tornadoes via wind speed estimates, the 

Richter and moment-magnitude scales do not give complete information concerning the 

severity of impact on a given area, although the qualitatively-based Mercalli scale for 

earthquakes accomplishes this goal to some degree (USGS 2011).   

People, Communities and Understanding Natural Hazards 

Humans have an inherent need to comprehend their physical surroundings, as well 

as to put atypical events into perspective (Davis et al. 1998).  For those communities that 

have experienced a tornado the idea of them being “unusual” may not seem applicable to 

their reality.  Grazulis (2001), however, claimed that any given home in the United States 

can expect to be hit by a tornado once every one-thousand years, and less than one 

percent of the U.S. population will ever find themselves in the path of a tornado.  For 

those that do find their lives affected by a tornado event, the impact can range from 

practically none to severe and life-changing.  As science constantly pushes forward in 

seeking to understand physical processes, it must also consider who and what physical 

processes affect: people and the communities in which they live. 
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First Realizations 

Gilbert White defined natural hazards as interactions between people and nature 

(White 1974).  Natural disasters are the manifestation of a potential hazard – when that 

potential hazard becomes real – with the end-result a physical impact on, and the people 

within, that area (Tobin and Montz 1997; Annan 2003).  Impact comes in many forms, be 

it loss of property or structures, injury, emotional stress,1 employment opportunities 

removed, difficulty in recovering from an extraordinary event or the loss of life.  Gaining 

an understanding of the physical mechanisms that create and drive phenomenal weather 

events is undoubtedly important, but prior to the 1950s, understanding the social 

dynamics of the areas under threat from those phenomena received far less attention. 

White‟s 1945 University of Chicago dissertation, Human Adjustment to Floods 

marked the beginning of a new chapter in hazard and disaster research.  Early in his 

career, White noticed the so-called structural response to flood control was the focus; the 

building of dams to contain nature‟s fury.  The social components that created underlying 

causes for the potential disaster received far less attention.   As quoted in Hinshaw (2006, 

134), White stated, “When I asked if they had ever considered looking into a floodplain 

to see what happened there, as distinct from computing the losses that would be 

experienced or averted, they said they weren‟t interested in that.”  Building to battle 

nature was of utmost concern while understanding who would be affected was a distant 

afterthought at best. 

                                                 
1 It is accepted within psychology and psychiatry literature that witnessing death, injury, 
destruction or otherwise being directly involved in a natural disaster event can lead to 
post-traumatic stress disorder (PTSD) as it satisfies Criterion A1 for that disorder as 
defined by the Diagnostic and Statistical Manual of Mental Disorders, Volume IV, 1994 
(Middleton et al. 2002). 
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The First Tornadoes in the Americas 

Natural disasters, including tornadoes, have been documented as far back as 77 

AD in Pliny the Elder‟s Naturalis Historia.  The first recorded tornadoes in the Americas 

occurred near the ancient Aztec cities of Tenochtitlan and Tlatelolco in August of 1521 

(Fuentes 2010).  Those events were described in the Spanish text Florentine Codex as, 

whirlwinds or severe winds (Sahagun 1970).  What is most likely the first tornado record 

in Colonial America was written by Massachusetts Governor John Winthrop on 5 July 

1643.  A witness to the storm noted a swirling black cloud that made a great deal of noise 

and lifted trees from the ground (Bradford 1999).  In an area now known to produce a 

low number of tornadoes annually, smaller funnels most likely went largely unnoticed 

from the late 1600s through the mid-1800s since the population was far less than it is 

today.  Benjamin Franklin speculated about the nature of waterspouts in the mid-1700s, 

and several outbreaks were observed and recorded through the end of the century, but 

tornadoes were little studied in America until the 1830s.  Three scientists, Robert Hare, 

William Redfield and James Espy, gave serious attention to the 31 May 1830 tornado that 

devastated Shelbyville, TN (Grazulis 1993, 2001).  In 1847, physicist Joseph Henry 

initiated a program through the Smithsonian Institute to create a network of weather 

observers that would report via telegraph to Washington D.C. their findings for him to 

analyze.  In 1862, Henry began compiling information from field observations on path 

length, width, location, direction, speed and shape of the funnel (Ludlum 1970).  It is 

believed that these data were used to better understand the nature of the phenomena, but 

never used in an attempt to forecast tornadoes.  It was also during the 1860s that William 

Ferrel, a mathematician and schoolteacher, became the first person to recognize the 
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relationship between the rotation of the earth and the rotation present in tornado-

producing thunderstorms (Grazulis 2001). 

The Birth of Weather Forecasting 

Observing turned to forecasting in 1870 when President Ulysses S. Grant directed 

military outposts to begin collecting meteorological information to be used for prediction, 

and to provide warning of approaching storms to mariners.  From this, the precursor to 

the modern National Weather Service (NWS) was born (Bradford 1999).  John Park 

Finley, a lieutenant with the U.S. Army‟s Signal Corps, engaged in data collection and 

attempted to forecast tornadoes from 1884 through 1886 as part of a test study.  Finley 

was able to predict the onset of violent storms with a substantial degree of accuracy, but 

less so for tornadoes, and this caused him to fall into the poor graces of his superiors.  

The Chief Signal Officer even disallowed the use of the word tornado in forecasts for 

fear that it might instigate public panic, which he thought would injure more people than 

the tornado itself.  Eventually, Finley was relegated to a desk job within the Signal Corps 

and the forecasting program was discontinued (Bradford 1999). 

The Weather Bureau, placed under control of the Department of Agriculture in 

1891, continued collecting data on storms, but did little research, and downplayed the 

need for tornado warnings, let alone forecasting.  Gustavus Hinricks, the first State 

Climatologist of Iowa, even stated that tornadoes did not occur in Iowa during the 

summer months (Grazulis 2001), a gross understatement given our spatial understanding 

of tornado distribution in the U.S. today.  These policies and lack of forecasting attempts 

surely harbor some of the blame for the massive loss of life that resulted from the 1925 

Tri-State (MO, IL, IA) tornado which resulted in 695 lives; more than any other tornado 
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in the U.S. before or since (Grazulis 1997).  The 1935 Labor Day hurricane also reflects 

this lack of foresight.  One of three Saffir-Simpson Category 5 hurricanes to make 

landfall on U.S. soil in the 20th century,2 it took an estimated 409 lives (McDonald 1935).  

Had a warning been issued prior to the hurricane‟s arrival, the high death toll may have 

been avoided.   

By the late 1940s and early 1950s, forecasting tornadoes was moving forward, 

and the directive to avoid use of the word tornado had vanished (Doswell 1993; 

Monfredo 2010).  The first successful tornado forecast in the U.S. occurred on 25 March 

1948 when meteorologists at Tinker Air Force Base in Oklahoma City, Oklahoma, noted 

similarities between the weather that day compared to five days prior, which had 

produced a costly tornado (Wagner 1999).  It was in the early 1950s that Tetsuya (Ted) 

Fujita came to the United States and began studying at the University of Chicago.  Going 

beyond the work of predecessors, Fujita (1978) recognized that convective cells that 

developed a radar signature in a shape resembling a bow frequently produced straight-

line winds; a phenomenon we recognize as a bow echo (Weisman 2001).  Downbursts, 

associated with bow and hook echoes, and carrying with them a great capacity to inflict 

damage via long paths of straight-line winds, were widely studied by Fujita (1985).  The 

sudden downward rushes of air were quickly recognized to be a major hazard for aircraft, 

and Fujita‟s work in understanding the downburst has been applied to pilot training 

programs across the world (Wilson and Wakimoto 2001).  Fujita also led the way in 

pioneering the use of satellite imagery to describe the motion of clouds (Menzel 2001), 

                                                 
2 Hurricanes Camille (1969) and Andrew (1992) made landfall in Mississippi and Florida 
respectively as Category 5s (National Hurricane Center 2010). 
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and produced a 70-year climatology of U.S. tornadoes, further aiding in the study of 

trends and frequency (Fujita 1987; Forbes 2001).  Fujita‟s work spanned four decades 

and produced the most renowned portfolio of severe storm research academia or practical 

application had seen before or arguably since.3 

Motion photography, instrumentation on aircraft, and experimental Doppler radar 

all continued push our understanding of tornadoes as well as forecasting ahead towards 

the end of the 1950s (Grazulis 2001).  Doswell (1993, 558) described the 1960s-era of 

tornado research as the time it was first realized that large convective storms known as 

supercells were, “prolific tornado producers.” Satellite-based meteorology was born in 

the 1960s, and the National Severe Storms Laboratory (NSSL) would begin to lead the 

field into a new era of forecasting methods and technology.   

In the 1970s, the so-called “golden age of tornado research” (Grazulis 2001, 240), 

a nationwide Doppler network was established, computer mesoscale modeling began to 

show signs of promise (Weisman and Klemp 1984), and Dr. Fujita introduced the Fujita 

Scale to estimate tornadic wind speeds through after-event ground observations (Fujita 

1971).  The 3-4 April 1974 “Super Outbreak” (Corfidi et al. 2010) provided a massive 

laboratory from which the effects of F5-level damage could be studied.  Today, Next 

Generation Radar (NEXRAD), a nationwide network of 159 Doppler radars, is widely 

used to forecast supercells likely to produce tornadoes, and computer modeling has 

become quite accurate up to three days from present.  Dr. Joseph Friday, former director 

                                                 
3 A symposium honoring the life work of Fujita was held in Long Beach, CA, in January 
1999.  Several key figures in meteorology were invited to lecture on his many 
accomplishments.  Their presentations were penned into manuscripts, and can be found in 
Bulletin of the American Meteorological Society 82(1): 9-118. 
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of the National Weather Service, stated that forecast modeling has hit what is known 

within meteorology circles as the “Hallgren Wall.”  Up to twenty-four hours from 

present, computer models and human forecasts present roughly the same level of 

accuracy.  Human forecasts add very little if any value to a computer model in the 24-72 

hour period, and actually decrease the accuracy of computer models that span beyond 72 

hours (personal communication, March 2011).  Proprietary software developed by Baron 

Services ® uses radar signals in conjunction with mesoscale models to rate the immediate 

potential for a tornado to form out of a particular cell.  The potential hazard is then 

ranked on the interval [0, 5], a scale called the Baron Tornado Index (BTI), and reported 

to the public via media outlets which have paid a user fee to Baron Services (Baron 

Services 2008).   

A Brief Overview of Tornadoes in the U.S. 

Over the course of a calendar year, the U.S. sees anywhere from 800 to 1,400 

tornadoes (1,280 in 2010, Figure 1.1), but only a small fraction cause fatalities.  Killer 

tornadoes struck 22 times and caused 45 deaths in 2010; with 58 on average per year in 

the 10 year period 2000–2009 (NCDC 2010a; SPC 2011), but fatalities from tornadoes 

actually have been steadily decreasing for over 50 years (Ashley 2007).  Although the 

number of tornadoes reported each year, beginning in 1950, has been steadily increasing 

(Figure 1.2), it is believed to be a function of better detection and forecasting methods, 

increased population in the U.S., better awareness of tornadoes by the public and the 

recent advent of technology such as cellular phones and the Internet, rather than an 

increase in the actual number of events (Ray et al. 2003).  The study of tornado 

distribution and frequency as well as the reliability of the National Oceanic and 
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Atmospheric Administration (NOAA) tornado record remains a key focus for researchers 

(for key publications in these areas see the work of Charles Doswell, Harold Brooks, 

Roger Edwards, Dan McCarthy, Joseph Schaefer and Stephanie Verbout).  

Figure 1.1: U.S. tornadoes, 2010 (source: National Oceanic and Atmospheric 

Administration/Storm Prediction Center). 

 

While tornadoes have occurred in every month of the year, an increase in 

frequency begins in March, peaks in May, then trails off through the end of the year with 

a second, but much smaller peak in November (Figure 1.3).  This pattern can be generally 

linked to the northward shift of Arctic air, the northward movement of dry air from the 

southwest and northward movement of moist air from the Gulf of Mexico region; all of 

which occur in the spring.  These three different air masses produce the conditions 

necessary for thunderstorm formation, which can result in tornadogenesis.  However, it 

should be noted that peak time varies by location within the U.S., beginning earliest in 
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the south and moving northward as the year progresses.  The increase in solar heat also 

contributes to the higher frequency during spring and summer months.  Because of this, 

there is no recognized tornado season for the U.S. as a whole, but varying seasons 

determined by geography.  Time of day also plays an important role in occurrence, with 

more tornadoes forming in mid-to-late afternoon and evening than early morning or late 

evening and/or night (Figure 1.4).  Thunderstorms gain energy from solar heat and the 

release of heat by condensing water vapor in the atmosphere, and these tend to be at their 

peak in the late afternoon. 

Figure 1.2: U.S. tornadoes, 1950-2010 (source: National Oceanic and Atmospheric 

Administration/National Climatic Data Center). 
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Beyond the Physical 

Tobin and Montz (1997) wondered why, if our scientific understanding of 

physical processes continues to increase, people continue to die from disasters.  They 

went on to state that the losses stemming from a disaster do not result completely from 

the physical aspects of the phenomenon, but that the dynamics of the society impacted 

must also be considered.  That sentiment was echoed by Cannon and Müller-Mahn 

(2010) who stated that disasters are socially constructed events, and that the results of a 

disaster are the product of the physical impact of the phenomena and the people affected.  

Hazard researchers frame this dynamic in the concept of social vulnerability, defined by 

Cutter and Finch (2008, 2301) as, “a measure of both the sensitivity of a population to 

natural hazards and its ability to respond to and recover from the impacts of hazards.” 

After the 1906 San Francisco earthquake killed an estimated 3,000 people (USGS 

2006), Abraham Himmelwright (1906, 13), a New York architect working for a firm 

hired to assess buildings in San Francisco after the event, wrote that, “Earthquakes 

are…natural phenomena and seldom cause loss of life, except indirectly, as when 

Figure 1.3: U.S. tornadoes by month, 

1950-1999 (source: Oklahoma 

Climatological Survey). 

Figure 1.4: U.S. tornadoes by hour of the 

day, 1950-1999 (source: Oklahoma 

Climatological Survey). 
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buildings collapse, etc.”  Himmelwright realized that people possess the ability to 

mitigate against mass losses by examining and altering the practices by which they 

construct the world around them.  Nonetheless, the social influence on disaster impact 

remained largely in the background until the 1950s, when the notion of societal 

contributions to disaster magnitude began to receive serious attention in academia (for a 

seminal work concerning how societies respond to disasters, see Form et al. 1956). Since 

then, vulnerability studies have examined myriad factors that influence the degree to 

which people may be potentially harmed by natural or human-induced catastrophes.   

Vulnerability study results generally produce measures of the potential for harm, 

and scales measuring natural disasters focus on the physical strength with which the 

phenomena strike; the coalescence of these two considerations as they relate to 

communities that are impacted by a natural disaster remains a lesser-studied topic.  Cross 

(2001) stated that while the likelihood of a small community experiencing a natural 

disaster is less probable due to its smaller physical size, the amount of suffering and the 

level of impact are heightened.  This is not to say that large communities are not 

impacted by disasters, but that they possess greater resources (or a greater adaptive 

capacity) to call upon for recovery, and the total community impact is lessened as the 

effects and response are distributed over a wider area (Gardoni and Murphy 2010). 

The social make-up of the community must be considered, as it is the very people 

affected that must take on the burden of recovery.  Most disasters are caused by 

geophysical systems that lay well beyond the boundaries of human control.  Yet it is 

widely accepted that within our social institutions and structures the concept of 

vulnerability has an intangible hand in producing the immediate and on-going impact of 
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an event (Nelson and Finan 2008; Cannon and Müller-Mahn 2010).  Researchers now see 

that who we are may be just as important as Immanuel Kant‟s chorologic and systematic 

perspectives of where we are, and what happens there.  Richard Hartshorne saw the 

where, what and how as geography‟s most central themes (Sack 1974), but it is now 

accepted that the who is critical in understanding how disasters impact communities. 

Objectives 

Ultimately, the primary objective of this research is to answer questions 

concerning how extent of damage, vulnerability of the population and size of a 

community relates to impact.  Does an EF2 tornado impart the same impact in Sioux 

City, Iowa, as it does in Dallas, Texas?  If  a large EF4 skims the outer edge of Mobile, 

Alabama, does it impact that community in the same manner as an EF4 that runs the 

length of downtown Lincoln, Nebraska, on a football Saturday?  A dataset that includes 

information on the physical aspects of tornado events from 2000–2009 in the coterminous 

United States was used to create and evaluate an index which sheds light on the human 

component of the tornado hazard.   

Social metrics used here include the monetary damage done to a community and 

the number of fatalities resulting from the tornado.  Injuries are not included since there is 

a vast spectrum of the severity of injuries; this is discussed further in Chapter Three.  The 

Abbreviated Injury Scale (AIS) and Organ Injury Scale (OIS) rate injuries on a scale 

from one (minor) to six (unsurvivable) (Gennarelli 2008; AAST 2011).  Minor injuries 

such as broken fingers are recorded in the Storm Prediction Center‟s (SPC) data the same 

as major injuries such as head trauma that may ultimately lead to death.  As such, the 

SPC tornado record provides no description or coding which indicates the severity of an 
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injury, and hence, the cumulative impact of injuries cannot be reasonably described based 

on the available data. 

Data were collected from recognized government sources, namely the SPC and 

National Climatic Data Center (NCDC), and used within a geographic information 

system (GIS).  Community/tornado track intersections were then linked to tabular data on 

deaths and monetary damage.  A second aspect of the communities in question, the level 

of social vulnerability, was also considered.  Indicators such as age, race, income and 

level of education for all U.S. communities were collected from the U.S. Census Bureau 

to serve as a baseline for constructing social vulnerability scores.  Using this two-part 

dataset and the methods presented herein, index and category scores were calculated.  

These are meant to quantify impact on each community intersected by a tornado path 

during the study period.  The goals of this research are to: 

1. Present a method that combines an indicator of physical damage and human 

fatalities resulting from a tornado event with the pre-event vulnerability of a 

community into a single value and category score that describes to what level 

a community has been impacted by a tornado event;  

2. Present a method (after Cutter et al. 2003) for calculating the vulnerability of 

U.S. communities; 

3. Discuss the results across the U.S., by Federal Emergency Management 

Agency (FEMA) Regions, in order to point out the differing levels of 

vulnerability as well as the frequency of tornado occurrence within those 

regions; 
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4. Use the calculated TICV scores and categories for four selected communities 

across three FEMA Regions to discuss how the TICV can serve to effectively 

stand as an indicator of the level of impact for that community, illustrating 

how each community will view the event as unique to their set of 

circumstances. 

Purpose and Importance of this Study 

The main purpose of this dissertation is to create an index that will allow the 

public - those affected and those in charge of recovery - to understand the severity with 

which a tornado event has impacted a community.  This index is developed based not 

only on the physical damage inflicted, but coupled with the social profile of the 

community.  Studies such as the one undertaken here are important to the scientific 

community as its members further the understanding of how people interact with and are 

affected by both the natural and built environments. 

The impact of a natural disaster is born of more that the physical damage to an 

area; impact also derives from the contribution of physical damage to the shift away from 

everyday life.  High vulnerability to natural disasters can increase the impact of an event, 

as can the size of the community in which it struck; both of those factors are taken into 

consideration here.  Conversely, lower levels of vulnerability can lessen the impact, as 

the community will have more resources to access in order to begin and sustain a 

successful recovery.  Scales that focus on the physicality of disasters seek to increase 

understanding of physical processes, and through further understanding of those 

processes, advanced warning systems can be developed which can aid in mitigation 

against hazards.   
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This research examines hazards from a different perspective, and attempts to 

provide insight into how the populations of areas are affected by disasters.  Furthering the 

knowledge base of the impacts on people and communities should be seen as equally 

important as furthering the knowledge of physical processes (Flanagan 2011).  With an 

enhanced ability to relate impact to the characteristics of a community and its residents, 

decision-makers may be able to gain a better understanding of not only what types of 

communities are at heightened risk from natural hazards, buy why they may be impacted 

to a heightened degree.  As will be shown in Chapter Two, Literature Review, there is 

currently no scale in place for tornado events that describes them from the point of view 

of impact on human populations.  For the purpose of this work, this index will hereinafter 

be referred to as the Tornado Impact-Community Vulnerability Index (TICV), and the 

category scheme will be referred to as Tornado Impact-Community Vulnerability Index 

Categories, or simply Tornado Categories (TCs). 

Structure of this Dissertation 

Chapter Two provides a review of the literature relevant to this research, with 

topics including types of vulnerability and their relation to natural hazards.  The review 

continues with an examination of several different indices concerning both societies in 

general and those specific to vulnerability to natural hazards.  The literature review 

concludes with a discussion of indices and taxonomy of natural disasters as well as a 

discussion of Value of Life (VSL) studies. 

Chapter Three begins with a description of the types of data used in this research 

and the sources for those data.  As the need to transform the data gathered here into a 

usable format was intensive, a description of those methods, as well as problems 
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encountered, is described.  Those procedures are detailed for both GIS shapefile as well 

as tabular census data.  Next, the methods used to construct the TICV and its core 

components (damage score and vulnerability score) are explained, which resulted in the 

TC scheme creation.  Chapter Three concludes with a description of data retained as a 

result of the cleaning and formatting procedures, and finally, the study area is described.  

Traditionally, the study area for this type of research is described first.  However, in this 

research, the study area of included tornado events was determined by the methods and 

procedures employed rather than the researcher (although the coterminous United States 

was selected by the author as the initial area of study, and is used in the vulnerability 

component construction).  Because of this, the study area followed from the methods 

employed to determine that area, and is described last in Chapter Three. 

Chapter Four describes the results by the ten FEMA Regions throughout the U.S., 

with those experiencing a higher frequency of tornado events described in more detail 

than those with lesser frequencies.  The Discussion section of Chapter Four examines in 

closer detail the TICV and TC score for four events, and compares and contrasts them 

according to what the TICV and TC mean for each community.  The idea that an index 

value cannot be seen as the ultimate explanation for an event is discussed in The Sense of 

Place and Loss section in Chapter Four, with special attention paid to how people and 

communities in general view place as an important aspect of life, and how people deal 

with losses stemming from a traumatic event.  Chapter Four concludes with a discussion 

of potential practical applications of the TICV.  In conclusion, Chapter Five summarizes 

the research as it is presented here, identifies the major findings of this research, 

discusses its limitations and outlines possible future directions for this topic.  Appendices 
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appearing at the end of the document list complete tornado event retention values for 

states included in this research, as well as a complete list of all communities in the dataset 

including summary statistics of the tornado event in each community and the TICV and 

TC calculated.  The final appendix includes, for easy reference, a list of all acronyms 

used within the text.
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CHAPTER 2 - Literature Review 

When we were children, we used to think that when we were grown-up 

we would no longer be vulnerable.  But to grow up is to accept 

vulnerability... To be alive is to be vulnerable. 
Madeleine L'Engle 

 

 This chapter provides an overview of the literature concerning vulnerability and 

natural hazards, as well as a review of index-based measurements used to describe not 

only pre-event vulnerability, but post-event magnitude and impact.  Vulnerability is a 

widely studied concept within fields of many social and natural sciences including 

sociology, psychology, health and medicine, politics, anthropology, geology and 

geography (Adger 2006; Eakin and Luers 2006).   

Human beings, as well as the social and physical constructions that make up their 

world, are at risk from any number of potential hazards.  Latent risk is all around us and 

apparent at all spatial scales (Birkmann 2006; Cardona 2006).  From seemingly mundane 

tasks such as driving to the store for groceries to tests of humans versus gravity, for 

example, skydiving, there exists around us a near infinite set of possibilities for us to find 

harm, or for harm to find us.  Some of those possibilities are simply unavoidable and 

some are not.  But what puts us at risk?  What makes us vulnerable to harm?  For the 

skydiver, the risk is obvious; one should expect a greater chance of death if one leaps 

from an airplane flying 2,000 meters above the ground.  For the homemaker stopping to 

buy food, some of the risks are also fairly obvious; traffic during the drive, a slippery 

floor or an armed assailant robbing the store while they shop.  But as people go about 

everyday life within the communities in which they live, constructs across space and time 

such as access to resources, age and health of the population, density of the built 
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environment and the types of houses in which people live all may increase or decrease 

the potential for the community as a whole to experience heightened or lessened effects 

from disasters (Lindsay 2003; Chang 2007; Cutter 2008; Sutter and Simmons 2010). 

Vulnerability and Natural Hazards 

In developing an index that suggests the extent to which a community has been 

impacted by a disaster, it is necessary to first discuss why one community may suffer 

more or less than another as a result of a natural disaster.  Natural hazard researchers and 

other social scientists view the level to which a community may be affected in terms of 

vulnerability.  The etymology of the word vulnerability indicates harm, as its Latin root 

means literally, “to wound.”  An examination of the published literature concerning 

vulnerability reveals a wide range of definitions, but a common theme emerges; 

vulnerability is the degree to which a person or community is at risk for harm.  In the 

context of this research, the potential harm stems from the naturally occurring 

phenomena of tornadoes.  Geographers are perfectly suited to address this issue, since, 

according to Cutter (2001), “The vulnerability of people and places is an inherently 

geographical problem, one that necessitates a spatial solution.” 

Thywissen (2006) identified 29 variations on the definition of vulnerability in the 

literature.  While researchers are busy at work trying to quantify, describe and ultimately 

reduce vulnerability, there exists no universal definition for what the term means.  

Birkmann (2006, 14) cited the  United Nations International Strategy for Disaster 

Reduction (UN/ISDR 2004) definition as one of the, “best-known;” as stated, 

vulnerability is defined by, “The conditions determined by physical, social, economic and 

environmental factors or processes which increase the susceptibility of a community to 
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the impact of hazards.”  The UN/ISDR recognizes that vulnerability is tied to and affects 

communities, but unlike the United Nations Development Programme (UNDP) 

definition, it does not directly connect people to vulnerability.  The UNDP (2004, 11) 

stated that vulnerability is, “…a human condition or process resulting from physical, 

social, economic and environmental factors, which determine the likelihood and scale of 

damage from the impact of a given hazard.”  This dissertation examines vulnerability at 

the community level, but recognizes that it is the aggregate vulnerability of the people 

within those communities that provides an indicator of vulnerability for the community as 

a whole. 

Thywissen‟s (2006) glossary went on to list over two dozen more definitions of 

vulnerability from academic areas including social science, natural science, general 

science (termed multidisciplinary), disaster management and engineering.  While 

engineering tends to provide quantitative-based definitions of vulnerability, most of the 

remaining definitions have a common general theme: vulnerability is a degree to which a 

person, group of people or some other larger areal unit are susceptible to harm from some 

external input.  The UN/ISDR and UNDP, as well as Davidson (1997) and Bollin et al. 

(2003), identify four categories of vulnerability (which are further discussed below) that 

can contribute to the level of risk as mentioned above; these are: 

1. Physical 

2. Economic 

3. Social 

4. Environmental 
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Vulnerability is also seen as having a double structure: external and internal.  

Bohle (2001) noted that external sides of vulnerability include those that expose 

populations to shock and risk, but are not created or nurtured from within the group, such 

as physical threats; e.g., earthquakes, floods, tornadoes.  The internal side of vulnerability 

is concerned with the ability of a population to cope with those external forces.  

Mitigation practices seek to reduce the impact of external forces by reducing 

vulnerability to them, and as such, constitute part of the internal dichotomy of the double 

structure. 

Physical Vulnerability 

The physical aspect of vulnerability is concerned with man-made infrastructure 

(Etkin 2003) as well as the physical presence of natural hazards such as landslides, 

earthquakes and volcanoes (Green and Rose 2005; Dominey-Howes and Papathoma 

2007; Douglas 2007, Uzielli 2008).  These considerations are usually examined alongside 

the placement of human populations to determine what tangible (physical) harm may 

come to people and infrastructure in a given area if an impending hazard physically 

manifests into a disaster.  Hewitt and Burton (1971) noted that this concept connects 

humans and the built environment to the physical surroundings.  People and property, 

therefore, cannot be separated from the physicality of hazard vulnerability; although 

social vulnerability (covered below) attempts to understand those relationships more 

thoroughly through the lens of human social considerations. 

The focus of physical vulnerability studies includes the physical dimensions and 

features of disaster events such as duration (length of the event), seasonality (time of year 

the event occurs), frequency (how often the events reoccurs), rate of onset (how fast the 
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event strikes), diurnal factors (time of day the event occurs) and magnitude (the physical 

strength of the event).  Using those dimensions, as well as the geophysical or atmospheric 

structure and behavior of hazards and disasters, GIS modeling of potential impacts over 

given areas has become a major focus.  The purpose of such modeling endeavors is to 

produce vulnerability and risk assessment maps for decision-maker and general 

population consumption (e.g., Zerger and Wealands 2004; Usul and Turan 2006; Vickery 

et al. 2006; Tarantino et al. 2007; Ebert et al. 2009; McLeman et al. 2010). 

Economic Vulnerability 

The economic aspect concerns attributes with a monetary value attached to them.  

These can include the value of land being used by people for some practical reason such 

as agriculture, the gross domestic product (GDP) of a nation or sources of import and 

export.  The vulnerability of a community or nation in terms of economics is concerned 

with the nature of exogenous shocks that can render the location more susceptible to the 

effects of climate, environmental change, land use change or natural disasters (Bruguglio 

2008).  Cordina (2004) stated that the conditions that make a population more 

economically vulnerable can either result from inadequate economic growth or contribute 

to its continuance.  Studies of this nature are often applied to import/export dynamics, the 

GDP and/or tourism economics of small nations or nation-states and small island 

developing states (SIDS), and have shown that increased risk and vulnerability negatively 

affects economic growth (e.g., Glezakos 1984; Guillaumont 1987, 2010; Bruguglio 1995; 

Meheux and Parker 2006; Turvey 2007; Boruff and Cutter 2007; Biswajeet 2010). 
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Social Vulnerability 

When framing the discussion around topics such as age, ethnicity and race, 

physical and mental health, education, affluence employment and housing stock/tenure, 

(Cutter et al. 2003; Glavac et al. 2003; Mayhorn 2005; Sutter and Simmons 2010; Worts 

2010), one is examining the concept of social vulnerability: how much in harm‟s way are 

we as a result of social factors in combination with the power of destructive natural 

events?  Social vulnerability primarily concerns the determination of what social and 

demographic factors are thought to raise or lower a person's risk from harm due to a 

disaster.  These factors, as listed above, compromise what Cutter et al. (2003) called the 

social profile of a community (also see Blaikie et al. 1994; Enarson and Morrow 1998; 

Buckle 2000; Putnam 2000; Tierney et al. 2001). 

White (1945) and later Kates (1971) and Mileti (1980) were among the first to 

recognize the need to include the populations that inhabit areas at risk as well as the 

physical components of those areas.  However, vulnerability studies have only become 

widely used within roughly the last fifteen years (Wisner et al. 2004).  Increasingly 

studied in recent years, research has shown there are distinct groups of individuals that 

consistently exhibit higher or lower levels of vulnerability.  The less affluent, the young, 

the elderly, persons who are physically or mentally disabled and require care from others, 

ethnic and racial minorities, immigrants (including non-native speakers), the 

unemployed, the unmarried and women are believed to have higher levels of 

vulnerability.  Conversely, the affluent, post-adolescent to middle-aged males in good 

physical and mental condition, ethnic and racial majorities, indigenous persons (including 

native speakers), those gainfully employed and the married are believed to possess lower 

levels of vulnerability (Enarson and Morrow 1998; Putnam 2000; Wisner 2001; Cutter et 
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al. 2003; Glavac et al. 2003; Handmer 2003; Turner 2003; Fothergill and Peek 2004; 

Wisner et al. 2004; Cutter and Finch 2008). 

Social vulnerability is a complex concept, as levels can change over time if the 

conditions contributing to the system of vulnerable persons improve.  For example, 

increased access to political capital, better housing and employment opportunities and 

increased institutional and structural systems put in place all may potentially reduce the 

level of vulnerability of individuals and groups (Cutter et al. 2003; Wisner et al. 2004).  

Measuring changes has been noted as problematic, however; according to Turner et al. 

(2003, 8076): 

Realworld data and other constraints invariably necessitate a „„reduced‟‟ 
vulnerability assessment.  Nevertheless, analysts must remain aware that vulnerability 
rests in a multifaceted coupled system with connections operating at different 
spatiotemporal scales and commonly involving stochastic and nonlinear processes.  

 
The temporal and spatial scales are important to consider when undertaking 

vulnerability assessment.  Data analysis performed at the national level may not 

accurately reflect a social profile at the sub-national (state, county or community) level, 

since there may exist unique sets of circumstances in localized areas that could yield 

different results at different scale, as demonstrated by Schmidtlein et al. (2008).  This is 

referred to as the modifiable areal unit problem (MAUP) within the context of spatial 

analyses (Openshaw 1984).  Albeit a complex and highly interrelated and interdependent 

concept, studies of social vulnerability will undoubtedly continue into the foreseeable 

future.  The ultimate goal of any study of such nature is to better explain and help to 

alleviate the conditions that put populations in positions within society, both physically 

and socially, that may increase their level of vulnerability.  
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Environmental Vulnerability  

Oluoko-Odingo (2011, 6) provided a definition of vulnerability that addressed 

environmental concerns; she stated that vulnerability is, “…the degree of loss resulting 

from a potentially damaging phenomenon or insecurity of the well-being of individuals or 

communities in the face of a changing environment.”  Environmental vulnerability 

studies largely examine the degree to which earth systems are put at risk due to climate 

and environmental, changing patterns of land use, sustainability and coupled human-

environment systems (Turner et al. 2003; Eakin and Luers 2006).  As human population 

continues to expand so too does the stress applied to natural systems.  Increased use of 

land for farming, urbanization, pollution and land degradation all contribute to increased 

pressure on geophysical and atmospheric processes.   

In terms of natural hazard and disaster research, the concept of environmental 

vulnerability becomes important in that degraded and over-worked natural systems that 

provide human populations with the basic necessities of life (e.g., access to food and 

water) may present increased levels of vulnerability to disasters.  Not built of the social 

systems and institutions of humanity, should these physical systems cross thresholds 

where they can no longer provide for people, the resulting lack of access to resources 

may increase risk for those in already vulnerable situations.  They may also place new 

sectors or groups of a population at risk, when they may have not been prior to the lost 

use of the natural system in question (Berkes et al. 2003; Chapin et al. 2004).4 

                                                 
4 For a lengthy review on vulnerability as it relates to environmental change see Adger 
2006. 
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Models of Vulnerability 

Developing conceptual frameworks, or models, for the study of vulnerability 

provides an overview of the complexity of the topic.  Several models of vulnerability and 

related core components appear in the literature (e.g., Adriaanse 1995; Maclaren 1996; 

Cardona 1999; Bohle 2001; Bollin et al. 2003; Turner et al. 2003; Bogardi and Birkmann 

2004; UN/ISDR 2004; Birkmann and Wisner 2005), but the Risk-Hazard (RH) model 

and Pressure-and-Release (PAR) models in particular have been identified by Turner et 

al. (2003) as the archetype for vulnerability analysis.  The third model reviewed below, 

the Hazards-of-Place (HP) model, is also widely viewed as a seminal framework in 

vulnerability studies.5 

Risk-Hazard Model 

The purpose of the RH model is to explain the impact of a hazard as a direct result 

of a population‟s exposure to the manifested hazard (disaster) and the degree of 

sensitivity to the exposed population (Burton et al. 1993).  The model is fairly 

straightforward, but possibly too much so.  Turner et al. (2003) stated that, as the result of 

further study, the RH model has been shown to possess severe shortcomings.  According 

to the authors, the RH model:  

1. has no function that describes how the system described can lessen or 

increase impacts; 

2. does not account for sub-system variation which could lead to a great deal 

of variation in the impact of a hazard; 

                                                 
5 According to the ISI Web of Knowledge, Cutter‟s 1996 paper Vulnerability to 
Environmental Hazards has been cited 138 times as of 11 February 2011. 
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3. does not allow for social considerations to affect levels of exposure. 

In Figure 2.1, the dotted lines connecting vulnerability to the exposure, sensitivity 

and impact nodes are implicit in their relationship to those nodes.  Vulnerability, as an 

input separate from the hazard, affects the exposure of the population, and the response 

ultimately figures into the level of impact experienced.  The RH model represents a 

classic view of how hazards relate to impact.  

Figure 2.1: The Risk-Hazard Model (based on: Turner et al. 2003). 

 

Pressure-and-Release Model 

The PAR model, devised by Wisner et al. (2004, 50), places disaster at the 

“intersection of two opposing forces,” the base (or progression of) vulnerability and the 

hazard (the perturbation, or disturbance of a previous state) (Figure 2.2).  Labeled the 

root cause, dynamic pressure and unsafe conditions, vulnerability is, as with the RH 

model, separated from but related to the disaster event.  The dynamic pressure is applied 

to a population from the root causes that ultimately create the unsafe conditions.  The root 

causes are seen as being temporally or spatially distant, and most importantly include 

economic, demographic and political processes.  They represent influences on the social 
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characteristics of the community that may have been put in place several generations 

prior to present time, or are institutions which operate at a great physical distance from 

the community in question.   Increased vulnerability stems from the root cause in the 

PAR.  The release results from the reduction in the level of vulnerability through 

improved structural conditions within the community.  The disaster impact then is a 

function of both pre-existing conditions within the population and the physical event 

itself. 

Figure 2.2: The Pressure-and-Release Model (based on Wisner et al. 2004). 

 

Hazards-of-Place Model 

Cutter (1996) developed the hazards-of-place (HP) model as a way to bring 

together physical (termed in her model biophysical) and social considerations of 

vulnerability (Figure 2.3).  While each of these is centered around the potential for harm, 

they all approach how people and institutions are placed in positions of risk in different 

manners.  For example, examining the physical vulnerability is a very different exercise 

than delving into the economic vulnerability of a given area; the two; however, are 

interrelated.  Risk levels affect the mitigation strategies employed, but lack of mitigation 
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increases risk.  Both risk and mitigation work together to determine the potential harm 

from a hazard.  This potential must be examined in terms of both the geographic context 

(where a disaster might occur) and the social fabric of the population at risk.  This 

implies that both place and profile of a community must be considered when determining 

vulnerability.   

Figure 2.3: The Hazards-of-Place Model (based on Cutter 1996). 

 

The geographic context in connection with all previous nodes leads to the level of 

biophysical vulnerability while the social fabric leads to the level of social vulnerability.  

It is these two final nodes, location and characteristics of a place, that determine its 

vulnerability.  The place vulnerability then connects back to risk and mitigation, in that 

depending on the level of that vulnerability, risk is either increased or decreased, and 

mitigation practices can be adjusted to lessen vulnerability.  Cutter‟s HP model represents 

a complex and interdependent system where pre-event vulnerability is determined by 

myriad factors.  Concepts such as vulnerability, when quantified, are often communicated 
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using an index.  The next section deals with the creation and use of indices regarding 

health, vulnerability and natural hazards and their impacts on society.   

Indices  

“The acid test for a new tool on how „natural‟ and easy it is to understand and 

how well it integrates within existing theory, is whether it is accepted by those who need 

to use it, and how well it works in solving their problems” (Saaty 1980, 4).  When 

developing his analytic hierarchy process (AHP), Saaty was primarily concerned with 

how to best decide what components are most appropriate to include in an analysis of 

some set of circumstances which may traditionally be viewed as difficult to quantify.  

Analysts can employ many different quantitative methods to determine a set of 

components suitable for use in the description of some natural or social phenomenon; the 

end result of such an exercise is likely to be an index (Nardo et al. 2008).  According to 

Farell and Hart (1998), indices are most generally used to bring a quantifiable meaning to 

qualitative situations.  This chapter continues with an overview of the use of indicators of 

vulnerability.  In the two subsections that follow, selected indices dealing with society, 

vulnerability and natural hazards and disasters are reviewed and summarized in Table 2.4 

with additional indices listed. 

Indices Concerning Health, Vulnerability and Natural Hazards. 

The following subsections review the literature focused on the creation of indices 

for not only vulnerability and hazards, which is the focus of this research, but on human 

health as well.  Linsday (2003) stated that, the health of the human population in the area 

affected by a disaster is a major concern.  Healthier populations are less vulnerable to the 
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effects of a disaster, and are thus able to recover more quickly than those populations that 

are of poorer health.  The review on health-related indices here is not meant to be 

comprehensive, since that area is not a primary focus here, but is nonetheless worth 

noting.  The concept of population health relates to socioeconomic conditions and social 

environments (Zoller and Lessof 1998), and those considerations relate directly to the 

concept of social vulnerability.  

The Air Quality Index (AQI) 

One of the most well known indices used to measure large-scale phenomena and 

put it into terms applicable to people is the AQI.  This indicator was initially developed 

as the Pollution Standards Index (PSI) by the United States Environmental Protection 

Agency (USEPA) in 1976 (Bishoi et al. 2009).  Thom and Ott (1976) defined this index 

as one that reports the quality of surrounding air with respect to the health of people 

breathing in that air.  The AQI uses the concentrations of five pollutants, carbon 

monoxide, nitrogen dioxide, ozone, particulate matter and sulfur dioxide.  Pollutant 

values are converted into a single index value by a relatively simple piecewise linear 

function (Equation 2.1) that utilizes concentration (C) breakpoints and index (I) 

breakpoints above and below pre-defined thresholds (USEPA 2009).   

Equation 2.1: The Air Quality Index (source: USEPA 2009). 

 

The purpose of the AQI is simply to inform a population as to the safeness of the 

surrounding air, and what some possible health effects (vulnerabilities) may be if polluted 

air at given levels is inhaled.  The AQI is set on the interval [0, 500], with zero 
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representing the least polluted air and posing lowest level of risk, and 500 representing 

hazardous levels of air pollution and the highest risk (Figure 2.4). 

The AQI is calculated daily using data from over one thousand sensors, and as 

mandated by federal law, reported to the public for cities with a population of more than 

350,000 (USEPA 2008).  While different from the index developed herein in the respect 

that the AQI is collected at known locations on a routine basis, whereas the index 

developed in this research reports on events that do not by their very nature occur 

regularly, the AQI serves a similar purpose to the proposed TICV and TC: it is an 

information tool. 

Figure 2.4: The Air Quality Index (source: USEPA 2008). 

 

There are many other indices targeted at ranking issues of human health,6 one 

being the Body Mass Index (BMI), which is found by dividing a person's weight by their 

                                                 
6 A search of the Kansas State library‟s ISI Web of Knowledge using the term “index,” 
within the document title then refining the search to medical and health related journals 
yielded a result of 34,175 articles as of 27 April 2011.  Undoubtedly some articles 
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height squared (Keys 1972).  Age is also taken into consideration, with children and teens 

commonly measured by the BMI-for-age scale (Must and Anderson 2003).  While the 

BMI draws criticism as not fully explaining obesity in any particular individual (since 

considerations such as muscle mass can artificially inflate the BMI), it is the most widely 

used score to determine patterns of obesity across large populations.  Obesity also can 

vary across cultures, which has led to the adaptation of the BMI on different scales for 

different countries. 

The Influenza Epidemic Severity Index (IESI)  

 Created by Simonsen et al. (1997), the IESI examined deaths with flu as the 

underlying cause from 1972–1996 as well as deaths from all causes for the same period.  

Using a cyclical regression model, the authors fit the least-squares line through each 

annual data set and developed a range of deaths that could be attributed strictly to 

influenza and pneumonia.  The authors broke this data into equal interval categories of 

the actual number of deaths, and this data was then transferred into categories that 

describe the severity of the outbreak, with category one representing a mild outbreak and 

category ten a severe outbreak.  The AQI, BMI and IESI all serve to assign an index 

value to some aspect of human health and in the process, hopefully, allows the situation 

to be better understood. 

The Social Vulnerability Index (SoVI) 

Cutter et al. (2003) developed the SoVI with the intention of describing, at the 

county level, vulnerability to environmental hazards.  Using 42 variables reduced from an 

                                                                                                                                                 

address the same index, but this serves to illustrate the ubiquity with which indices are 
used concerning human health. 
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original set of 250 by testing for multicollinearity, principal components analysis (PCA) 

was applied to discover what variables described the most variance within the dataset.  

The PCA produced 11 factors that explained 76.4 percent of the variance across all U.S. 

counties.  The results showed that personal wealth (per capita income being the dominant 

variable) was the highest rated factor, explaining 12.4 percent of the variance in the 

dataset, followed by age at 11.9 percent and density of the built environment (number of 

commercial establishments per square mile) at 11.2 percent.  

Figure 2.5: Comparative vulnerability of U.S. counties based on the Social 

Vulnerability Index (source: Cutter et al 2003). 

 

In order to produce the SoVI, the authors placed the factor scores for each county 

into an additive model that resulted in a composite index score of vulnerability for each 

county in the U.S., and displayed the results as a measure of standard deviation (Figure 

2.5).  Lower standard deviation equates to lower levels of vulnerability and higher 
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standard deviation equates to higher levels of vulnerability.  The results showed that 

counties with high density of the built environment, high degrees of racial and ethnic 

inequality and socially dependent populations all contributed to high levels of 

vulnerability in a given county.  Conversely, counties on the low end of the SoVI all 

exhibited large populations of Caucasian, wealthy, highly educated persons in suburban 

(less densely populated) areas.  Cutter et al. (2003) illustrated a collection of a wide range 

of variables narrowed down through statistical techniques, with the final result, the SoVI, 

producing a single value that described the potential for counties in the U.S. to be harmed 

by environmental disasters. 

A Social Vulnerability Index (SVI) for Disaster Management 

Flanagan et al. (2011), echoing White (1945) noted that through the twentieth 

century, disaster management has typically focused on structural and technological 

solutions.  They further recognized that socioeconomic concerns were not given much 

attention within disaster management institutions until the 1970s.  According to the 

authors, the concept of social vulnerability is more often than not ignored when 

mitigation practices are studied and implemented.   

The HAZUS-MH (Hazards United States-Multi-Hazard) software package, first 

produced by FEMA in 1997, received an additional set of tools in 2009.  The latest 

version includes the ability to incorporate social considerations in disaster risk mapping.  

Flanagan and his colleagues considered the domains of socioeconomic status, household 

composition and disability, minority status and language, and finally, housing and 

transportation census data at the tract  level to construct the SVI.  Their methods involved 

using 15 census variables that describe vulnerability in terms of the four domains listed 
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above, and included all 65,081 census tracts in the U.S.  The percentile rank for each tract 

was calculated, then a count (termed flags) of each individual variable with percentile 

ranks over 90 was found.  The total number of flags was then used to identify census 

tracts that may have high vulnerability as indicated by a high percentile rank in at least 

one of the domains examined.   

Figure 2.6: Katrina-related drowning deaths and Social Vulnerability Index for the 

elderly (source: Flanagan et al. 2011). 

 

Their results were then imported into a GIS environment, and analyzed using the 

HAZUS-MH flood modeling package (Figure 2.6). They displayed the results of the SVI 

as applied to potentially vulnerable tracts overlaid on the hurricane Katrina flooding 

events, occurring in New Orleans, LA,  in 2005.  Their results, while not conclusive due 

to a lack of some necessary data elements concerning mortality rates among the elderly, 

do show that the elderly were disproportionately affected by flooding.  The SVI shows 

that the intersection of physical considerations, social vulnerability and the appropriate 



 38 

GIS techniques can provide a very different picture of a disaster event when the 

population dynamics of an area or community are considered.  

The Hurricane Vulnerability Index (HVI) 

Another application similar to the SoVI and SVI dealt with coastal vulnerability 

focused on the impact of hurricanes and storm surge associated with them.  Dixon and 

Fitzsimmons (2001) examined the vulnerability of Texas Gulf Coast communities to 

hurricanes.  Using Saffir-Simpson intensity categories for historical hurricanes as well as 

population and property value data for each county, the authors developed an additive 

model resulting in five categories of risk scores and five exposure scores; the HVI is then 

found by adding the two scores.  This method illustrated an attempt to combine not only 

data on events that have already occurred, but to couple those data with the potential for 

harm to a county given the population and assumed worth of the property in that 

community, creating an index value that served to assign a measure of potential loss in 

the event of a hurricane. 

The Coastal Vulnerability Index (CVI) 

In a work similar to the HVI, Pethick and Crooks (2000) created the CVI by 

examining the vulnerability of coastlines through the work of several other studies from a 

geomorphological perspective.  Often these changes are the result of a high energy input 

such as storm surge resulting from a hurricane, but also occur slowly over time with 

sustained erosional inputs.  Coastlines will maintain an equilibrium with environmental 

conditions until some threshold is reached.  However, many small scale changes in 

coastlines do not lead to morphological change since many of the perturbations apparent 

along coastlines are not large enough to instigate any large scale change.  The authors 
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examined factors such as exposure of cliffs, sand dunes, spits, beaches, estuaries and salt 

marshes in terms of their contribution to vulnerability of the coastal system as a whole. 

Compared to the indices reviewed above, the CVI is relatively simple: 

vulnerability is equal to relaxation time divided by return interval of an erosion event, 

where relaxation time is the temporal lapse between a given erosional episode.  The CVI 

results in an index on [1, 10] where one represents the least vulnerability and ten 

represents the greatest.  Cliffs showed the lowest contribution to coastal vulnerability 

while salt marshes, spits and estuaries showed the highest.  The authors claimed that 

recognizing vulnerability is necessary in order to monitor periodic changes in coastal 

systems, which can aid in determining which events can be attributed to natural change 

and which may be anthropogenically initiated.  They go on to state that human-induced 

change is likely to have a greater and more immediate impact on those coastal landforms 

with higher CVI scores, and that careful study of the thresholds of each landform should 

be conducted. 

The Disaster Risk Index (DRI) 

Peduzzi et al. (2009) examined droughts, earthquakes, tropical cyclones and 

floods from 1980–2000 in the context of loss of life to create the DRI, which was used in 

the UNDP (2004) report Reducing Disaster Risk.  According to the authors, the DRI was 

the first index to examine the connections between vulnerability, the threat of disasters 

and the level of a country‟s development.  Calculated for all countries where data was 

available, their index took into account probabilities of disasters occurring and population 

of areas likely to have been affected by the onset of such disasters.  The DRI allows the 

end user to specify the weight that should be assigned to the variable concerning deaths, 
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allowing it to remain flexible and useful for both developed and developing countries, 

where levels of vulnerability can markedly differ markedly.  The authors stated that 

future iterations of the DRI should include measures of severity of the disaster in addition 

to risk probability. 

A Resiliency Index 

Cutter et al. (2010) measured the resiliency of southern U.S. counties in FEMA 

Region IV (the southeast) to natural disasters.  In the context of environmental and 

hazards research, resiliency is largely viewed as the complimentary counterpart to 

vulnerability as it indicates the “systematic characteristics that make systems more robust 

to disturbances” (Turner 2010, 573).  The resiliency indicator of the ability to withstand 

and recover from the impacts of such hazards as hurricanes, flooding, tornadoes and sea 

level rise was created from 36 variables, reduced from an original set of 50.  Data 

reduction was achieved through examining correlation coefficients as well as Cronbach's 

Alpha7 measure to reach a level of internal data consistency (Nardo et al. 2008).  

Indicators were placed into one of five categories describing resilience: social, economic, 

institutional, infrastructure and community capital.  The data was then transformed using 

the linear scaling transformation (a.k.a. the Min-Max) method, to create an unweighted 

index value on [0, 1].  The authors chose an equal weighting scheme for simplicity and 

ease of understanding, and further found, 

no theoretical or practical justification for the differential allocation of importance across 
indicators.  While methods exist for determining weights that are subjective or data 

                                                 
7 Cronbach‟s Alpha is used as a measure of the internal consistency of a dataset.  The 
internal consistency of a dataset is said to be high when the correlations among the items 
in the set is high, which results in a higher Alpha statistic (Cronbach 1951). 
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reliant, such weighting schemes do not always reflect the priorities of decision makers 
(after Etsy et al. 2005) (Cutter et al. 2010, 10). 
 
The authors then mapped the full resiliency index using standard deviation cutoff 

scores (Figure 2.7) as well as each individual resiliency component scores.  Results show 

that Mississippi, Alabama, Georgia and Tennessee all show mostly low to moderate 

resiliency, while Kentucky, North and South Carolina and Florida all show mostly 

moderate to high resiliency.  The authors noted the urban-rural dichotomy, with metro 

areas displaying higher resiliency and rural areas showing lower levels, attributed to 

higher economic resiliency in the former.  Their study further showcased the practical use 

for indicators aimed at population sensitivity to natural hazards and disasters.  

Figure 2.7: Disaster resiliency in FEMA Region IV (source: Cutter et al. 2010). 
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Indices and Taxonomy Concerning Natural Disasters 

Categorizing and indexing social characteristics of vulnerability to natural hazards 

represents only one part of the attempt to relate disasters to human populations.  For 

purposes of cataloging events it becomes important for researchers to be able to refer to 

events in terms of their size and scope.  As previously mentioned, tornado researchers 

among others now use the Enhanced Fujita Scale (EFS) to rank a tornado based on 

perceived wind speeds resulting from damage observations.  The following sections 

review some of the more well-known scales, including the EFS, used in natural hazard 

and disaster research. 

The Enhanced Fujita Scale  

The original F-Scale, introduced by Dr. Theodore Fujita (Fujita 1971) has since 

been modified in order to correct for problems such as over-estimation of wind speeds 

inherent in the first version.  Application of the F-Scale was widely accepted after its 

release (McDonald 2001) as the primary measure of a tornado‟s physical power, just as 

the EFS is today (Potter 2007; Doswell et al. 2009).  However, the original F-Scale 

contained a high enough level of subjectivity and inconsistency to warrant restructuring it 

into the EFS; a problem Fujita (1992) himself recognized (United States Department of 

Commerce 1998; McDonald 2001; Edwards 2003; Guyer and Shea 2003). 

 Arriving at an EFS value begins by trained observers surveying the damaged 

areas following a tornado.  Personnel first match the type of structure to a selection in a 

table of 28 Damage Indicators (DI) (Table 2.1).  The DI table consists mostly of what 

type of building was damaged (e.g., strip mall, motel, metal building, high-rise), but also 
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includes other structures (such as flag poles and towers), and two categories of trees, 

hardwood and softwood.  Next, a table of Degrees of Damage (DOD) ( 

Table 2.2) specific to the DI is referenced, with observed damage fitting into a category 

ranging from one to ten.  Each successive step upwards in the DOD table indicates more 

severe damage linked to higher wind speeds with the goal of estimating peak wind gust 

during a three second period.  From the range of estimated wind speed, an EF value from 

zero to five is assigned (EF0-EF5) (Table 2.3). 

Table 2.1: Damage Indicators (source: Wind 2004). 

 

Table 2.2: Degrees of Damage for DI No. 2, FR12 (source: Wind 2004). 
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According to Doswell (2009) it remains questionable whether or not these 

additions meant to provide more specific damage criteria from which wind speeds can be 

estimated have resulted in a more accurate picture of the physical nature of tornado 

events.  Doswell (2009, 561) stated that "the methods used for rating tornado intensity in 

the USA have been changing ever since the F-Scale was adopted” and further, "...the EF-

Scale is only the latest episode in the story of that evolution.”  While the EFS is the most 

widely used measure for tornadoes, there are other methods by which hazards, disasters 

and the impacts they can bring are quantified.  The tornado taxonomy examined next, 

while not an index or measure of impact, illustrates the breadth of work undertaken to 

catalog and describe tornado events. 

Table 2.3: The Enhanced Fujita Scale (source: Potter 2007). 

 

A Tornado Taxonomy 

Recently, the work of Agee and Jones (2009) produced a taxonomy for tornadoes 

based on the type of convective system that produced the funnel.  The classification was 

based on three types of vortices, Type I, II and III.  Type I vortices are linked to 

supercells with mesocyclones, Type II tornadoes are generated by quasi-linear convective 
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systems and Type III includes tornadoes produced by localized convective and shear 

vortices.  The authors stated that their typing system may allow the NWS to more 

accurately produce more informative warnings.  They further state that their taxonomy 

may provide a baseline by which the effects of climate change on tornado frequency 

patterns could be explained, as it is becoming increasingly clearer that human actions are 

inadvertently increasing both the frequency and intensity of climate-related hazards and 

disasters (Birkmann 2010; Cannon and Müller-Mahn 2010).  However, in a reply by 

Markowski and Dotzek (2010) the authors made a case for the apparent difficulty in 

collecting the data necessary to implement such a taxonomic scheme. They further 

argued that problems in the U.S. tornado record8 affecting the ability to study trends 

poses a much more pressing issue than the lack of a classification method of the detail 

proposed by Agee and Jones' 2009 taxonomy.  This consideration is discussed in further 

detail in the Chapter Five section Potential Future Research.   

The Outbreak Scale (O-Scale) 

Another recent study created a classification system for severe weather events 

based on several data types concerning tornado outbreak days.  Doswell et al. (2006) 

devised the tornado Outbreak Scale (O Scale), with outbreaks defined as seven or more 

tornadoes, and included the following data within the classification scheme: 

1. Number of tornadoes; 

2. Number of violent tornadoes (EF-4 and EF-5); 

3. Number of significant tornadoes (EF-2 or greater); 
                                                 

8 For a thorough review of the characteristic problems in the tornado record to which 
Markowski and Dotzek refer, see Evolution of the U.S. Tornado Database: 1954-2003 
(Verbout et al. 2006). 
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4. The Damage Potential Index (DPI) (Thompson and Vescio 1998); 

5. Path length; 

6. Number of deaths; 

7. Number of killer tornadoes (tornadoes that caused at least one fatalities); 

8. Number of tracks 80 kilometers (50 miles) long or greater. 

Doswell et al. (2006) 

 

The index calculation is straightforward, and is arrived at by standardizing each 

outbreak date‟s variables described above by mean and standard deviation, and then 

applying a linear weighted average.  The Doswell et al. (2006) study used deaths and 

number of killer tornadoes.  In this regard, their study included human loss within the 

scale devised, similar to the work undertaken here.  The final O Scale index values varied 

slightly at the high and low end, depending on the weight assigned to each variable (the 

authors assigned the weights arbitrarily depending on the perceived importance of each 

variable in the index calculation; a method they recognized as subjective), but ranged 

from a score of 2.768 for the 3 May 1999 outbreak (e.g., Brooks and Doswell 2002; 

Brown et al. 2002; Hamill et al. 2005) and 22.565 for the 3 April 1974 “Jumbo 

Outbreak” (Fujita 1974; Corfidi et al. 2010).  The utility of the O Scale is flexible, in that 

weights can be changed to fit specific needs of different projects, and according to the 

authors it may aid in, “the effort to understand the meteorological differences, if any, 

between days producing major tornado outbreaks from those that produce primarily non-

tornadic severe convective storms” (Doswell et al. 2006, 939).  The authors also noted 

that not all significant meteorological events will result in significant impact on humans, 
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and that conversely, a meteorological event that does impact humans may not be 

noteworthy; these sentiments underlie the TICV and TC. 

The Northeast Snowfall Impact Scale (NESIS) 

Kocin and Uccellini (2004) used data from thirty large-scale New England 

snowstorms from 1950–2000 layered on population density to create the NESIS. The 

NESIS is found by: 

Equation 2.2: The NESIS. 

[ ( / / )]
x

n mean n mean

n

n A A P P  

where  

n  = snowfall values divided by 10 

An  = mean area of snowfall greater than 10 inches 

Amean = mean area of snowfall over 10 inches over the 50-year study period 

Pn = estimated 1999 census population living within An 

Pmean = mean population for the 30 cases included in the 50-year dataset 

 

 NESIS values in the 50-year study set ranged from a low of 1.46 to a high of 

12.52.  Those data were then mapped within a GIS to display the spatial extent of the 

snowfall event (Figure 2.8).  To fit the NESIS values onto a more meaningful rank 

structure, the authors calculated NESIS values for an additional 40 storms (bringing the 

dataset total to 70) and broke them into five categories of severity on [1, 5], with one as 

the lowest and five as the highest.  The authors also added accompanying descriptions 

indicating the severity of each event.  A category one event (NESIS = 1-2.499) was 
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“notable,” a category two event (NESIS = 2.5-3.99) was “significant,” category three 

(NESIS = 4-5.99) was referred to as “major,” category four (NESIS = 6-9.99) as 

“crippling,” and finally, category five (NESIS ≥ 10) was labeled “extreme.”   

Figure 2.8: NESIS value and snowfall categories, March 1993 storm (source: Kocin 

and Uccellini 2004). 

 

 
 

The NESIS, while using different methods than proposed for the TICV, is similar 

in intent.  According to the authors (Kocin and Uccellini 2004, 178), 

The NESIS differs from the Fujita tornado scale and the Saffir-
Simpson hurricane scale in that the NESIS focuses on the amount of 
snow that falls, mapped onto the population density that experiences 
the snow, rather than focusing on wind as the major impact agent.  
Furthermore, NESIS values are computed directly and provide an 
objective measure of the impact of a snowstorm on the population 
distribution.  

 

The physical accumulation of snow is no doubt an important component to 

calculating an NESIS value, but clearly the authors goal was to produce values that have 

meaning in terms of the people a storm had impacted.  The work of Kocin and Uccellini 
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was continued by Squires et al. (2006) with the intent of producing an operational 

NESIS.  One of the practical additions of their work was the spatial pre-processing of the 

data and the implementation of the Local Moran‟s I statistic, which was used to locate 

spatial clusters and identify trouble areas which were likely to have received more or less 

snow that reported by observation stations.  They developed the Regional Snowfall 

Impact Scale (ReSIS) based on the NESIS methods, but with new means and thresholds 

defined for each of the 13 National Climatic Data Center (NCDC) climatic regions in the 

U.S. to better allow the scale to have real meaning in those regions. 

The Disaster Impact Index (DII) 

Gardoni and Murphy (2010, 619) created the DII to, “gauge the societal impact of 

disasters on the basis of the changes in individuals capabilities.”  In terms of the DII, the 

authors use the capability approach, which was developed by Sen (1989; 1993; 1999a; 

1999b) and Nussbaum (2000a; 2000b; 2001), “to gauge the quality of life of individuals 

as a way of determining the overall level of development of societies” (Gardoni and 

Murphy 2010, 620).  The capability approach attempts to measure well-being as it applies 

to a person‟s ability to function in a society.  Health, access to shelter and property, 

mobility and level of education all contribute to a person‟s capability, and it is these 

factors among others that the authors took into account.  The authors stated there are four 

criteria which capabilities must meet in order to gauge societal impact; these are: 

1. Relevance: the capabilities considered must be related to the purpose of 

determining societal impact; 

2. Importance: the capabilities considered must be of enough importance to justify 

wanting to mitigate against their loss in the future; 
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3. Influenceability: the capabilities considered must be responsive to policy change, 

in that future impact can be reduced; 

4. Practical implementability: the capability-based index proposed should be 

practical in that it: 

a. uses the least number of variables as possible to reduce the amount of 

data that needs to be collected (parsimony);  

b. uses variables that are as unique from one another as possible 

(orthogonality). 

(Gardoni and Murphy, 2010, 623) 

 
Four capability groups were identified and corresponding indicators selected to 

represent each group.  For the group termed longevity, the number of individuals killed 

served as the lone indicator.  In the physical and mental health group, indicators included 

number of individuals injured, left homeless and left without adequate access to a water 

supply.  For affiliation and mobility, the number of individuals unemployed due to the 

disaster as well as the ability to move about freely served as indicators.  Finally, in the 

command over resources group, the lone indicator was direct economic losses resulting 

from the disaster.    

In order to calculate the DII, the authors first determined the value for each 

indicator, then scaled those values onto [0, 1], where a value of zero indicated no value 

(no consequences, or no impact) for that indicator and a value of one indicated, 

“reasonable maximum consequences” (Gardoni and Murphy 2010, 629).  However, the 

authors took no steps to quantify the upper bound of the interval for each indicator k, and 

as such, their definition of “reasonable maximum consequences” is unclear.  In order to 
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determine the maximum value for each indicator, the -percentile of the indicators 

ranked value was used.  This method was employed so that an outlier (unusually large 

event) would not set up an indicator whose maximum value is non-representative of the 

indicators across all disasters.  The Indicator Index (II) is then determined by dividing the 

indicators actual value by the maximum value.  The Disasters Index (DI) is then found 

by: 

Equation 2.3: The Disaster Index. 

 

 

where  

k = number of indicators 

n = total number of IIs 

ak  =  the exponent used to taper the effect of IIs on the DI as the IIs increase in value 

The DII is then found by: 

Equation 2.4: The Disaster Impact Index.  

 

where 

ns = number of individuals in the population affected that are described by the DI 
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 In agreement with Cross (2001) (as well as is argued in this research), the authors 

stated that, “The larger a society is, the smaller the actual impact of a disaster is for a 

given DI” (Gardoni and Murphy 2010, 631).  In order to illustrate the DI and DII the 

authors compared two earthquake events, one in Pakistan in 2005, and one in Japan in 

1995.  Their analysis concluded that although the Pakistan earthquake was larger in 

magnitude (7.6 on the Richter scale) than the Japan earthquake (7.2 on the Richter scale), 

the Pakistan event scored a DI of 1.108 and a DII of 0.663 compared to the Japan event, 

which scored 0.725 and 0.577 respectively.  Cost divided by gross domestic product 

(GDP) and the number of Pakistanis left homeless drove the DI and DII values higher 

than those of Japan, as Pakistan is considered a developing nation, having fewer 

resources to draw upon in the event of such a disaster.   

A second analysis comparing the 1994 Northridge, CA, earthquake and the 2005 

Katrina hurricane revealed that the two events scored similar DI and DII values; 0.401 

and 0.154 respectively for the Northridge event and 0.597 and 0.208 respectively for the 

Katrina event.  While hurricane Katrina killed far more people and did more monetary 

damage than the Northridge earthquake, the burden of Katrina was spread out over a 

larger population base than that of the Northridge earthquake, resulting in the comparable 

scores. 

Although similar in intent to the TICV proposed herein, the DII values are derived 

from the Emergency Events Database (EM-DAT 2006), which details large-scale 

disasters, whereas the TICV was developed from NOAA tornado data, and is specific to 

tornado events (although it could, by design, be applied to any disaster event).  The DII 

could potentially be scaled to smaller events than those outlined by the authors; however, 
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the indicators used are not available for all disasters, including tornadoes (see McCarthy 

2003).  As such, the TICV provides an index and category value describing impact from 

a tornado event that the DII, by design, cannot.  The DII seems well suited to describe 

impact of large events, and could even be used to describe very large-area, multiple-

community tornado events (e.g., Jarrell, TX, 1997; Moore, OK, 1999), but operationally 

is too large in scope to be used to compare tornado events which are often on a far 

smaller scale than hurricanes, earthquakes and floods, as the TICV is proposed to do at 

the community level.  Table 2.4 below summarizes the indices discussed in the preceding 

section, with the addition of several others not described in detail above.  

Table 2.4: Summary of selected indices. 

 

Author(s)/Year  Index or Scale Name 
and/or Phenomena 
Measured 

Description 

Keys (1972) Body Mass Index (BMI) Weight divided by height squared 

United States 
Environmental Protection 
Agency (1976) 

Air Quality Index (AQI) Concentrations of carbon monoxide, nitrogen dioxide, ozone, particulate 
matter, and sulfur dioxide in the air 

Michel et al. (1978) Oil Spill Vulnerability 
Index (OSVI) 

Longevity of an oil spill in the absence of human intervention 

Simonsen et al. (1997) Influenza Epidemic 
Severity Index (IESI) 

Deaths with flu as the underlying cause 

Easter (1999) Commonweath 
Vulnerability Index 
(CVI) for small states 
development 

Impact of outside forces (natural or man-made) combined with 
resilience measured by gross domestic product 

Pethick and Crooks (2000) Coastal Vulnerability 
Index (CVI) 

Exposure of physical coastal features to geomorphological change 

Chen et al. (2001) Soil Erosion Index 
Model (SEIM) 

Environmental damage caused by soil erosion due to overdevelopment  

Cutter et al. (2000) Vulnerability to 
technological disasters 

Examined the vulnerability of Georgetown, South Carolina, in terms of 
exposure to harm from technological disasters (e.g., railway, highway, 
and chemical facility accidents) as well as natural disasters (e.g., floods, 
earthquakes, and hurricanes). 

Dixon and Fitzsimmons 
(2001) 

Hurricane Vulnerability 
Index (HVI) 

Hurricane vulnerability for the Texas Gulf Coast region using 
population and property data 

Sullivan (2002) Water Poverty Index 
(WPI) 

Socioeconomic indicators and water availability estimates used to 
determine vulnerability to water shortages 

Cutter et al. (2003) Social Vulnerability 
Index (SoVI) 

Demographic, economic, housing, and land-use variables  
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Author(s)/Year  Index or Scale Name 
and/or Phenomena 
Measured 

Description 

Belousova (2003) Groundwater quality 
sustainability 

Pollution damage, groundwater pollution, hydrogeochemical indices, 
pollution transport and mitigation, and leakage and aquifer interaction 

Braganza et al. (2003) Global climate 
variability and change 

Five separate indices including global-mean surface temperature, land 
and ocean surface temperature contrast, inter-hemispheric difference in 
surface temperature, mean magnitude of the annual cycle in temperature 
over land, and mean meridional temperature gradient in the northern 
hemisphere mid-latitudes 

Kocin and Uccellini 
(2004) 

Northeast Snowfall 
Impact Scale (NESIS) 

Snowfall data overlaid on population for the area affected 

Esty et al. (2005) Environmental 
Sustainability Index 
(ESI) 

Health of environmental systems, reduction of environmental stress, 
reduction of human vulnerability, social and institutional capacity, and 
global stewardship 

Doswell et al. (2006) Outbreak Scale 
(O-Scale) 

Classification for severe weather events based on data concerning 
tornado outbreak days 

Rygel et al. (2006) Social vulnerability to 
hurricane storm surges 

Socioeconomic data and physical exposure to hurricane-generated storm 
surges 

Spittal et al. (2006) Earthquake readiness 
scale 

Questionnaire responses concerning household preparedness used to 
construct a scale classifying level of readiness in the event of an 
earthquake 

Squires et al. (2006) Regional Snowfall 
Impact Scale (ReSIS) 

Continuation of the work of Kocin and Uccellini (2004) applied to the 
13 NCDC climatic in the U.S. 

Ewing et al. (2007) Local Housing Price 
Index (HPI) 

Variance in mean housing prices in six MSAs affected by severe wind 
events and tornadoes  

National Weather Service 
(2007, adapted from 
Fujita, 1971) 

Enhanced Fujita Scale 
(EFS) 

Physical damage caused by tornado events resulting in an estimation of 
wind speed and a classification for an event from EF-0-EF-5 

Agee and Jones (2009) Tornado taxonomy Tornado taxonomy based on the type of convective storm that produced 
the funnel 

Bowles (2009) Heat stress classification Accumulated high temperature, humidity, and recovery time data for 70 
U.S. locations 

Peduzzi et al. (2009) Disaster Risk Index 
(DRI) 

Disaster risk probabilities and population data used to calculate the 
potential for harm from floods, earthquakes, tropical cyclones, and 
droughts 

Gardoni and Murphy 
(2010) 

Disaster Impact Index 
(DII) 

An index based on the capability approach to measure impact of large-
scale natural disasters 

   

 

Assessing the Value of Life 

As part of the calculation methods described in Chapter Three, a value per fatality 

is assigned.  Assigning a monetary value to the life of a human being may seem a 

macabre exercise in mathematical and statistical alchemy, and is certainly not a simple 

undertaking (Tobin and Montz 1997).  However, government and industry routinely 

utilize empirical values in order to assess the value of risk-reducing measures and provide 
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compensation to next-of-kin in the event of the loss of life.  Value-Of-Life (VOL) studies 

have been conducted for the aforementioned purpose, and the results of such calculations 

are referred to as the Value per Statistical Life (VSL).  According to Viscusi et al. (2000, 

665),  

[The VSL] is a common measure used in court cases for 
compensating survivors, inasmuch as it is a reflection of the net 
economic loss to the survivors after the death of a family member.  
[T]his technique not only has appeared in the literature but also has 
been widely used by government agencies. 
 

The structure of VOL studies involves survey questionnaires concerning the value 

a person places on risk-reduction.  It utilizes numerous and complex statistical techniques 

and many variables, including occupation type and fatality rate in that occupation, age, 

gender, immigration status and health of the subject to name just a few.  Accepted VOL 

formulas also incorporate monetary values such as loss of future earnings (a loss to the 

individual and his/her family), loss of tax revenue (a loss to society) as a result of death 

(Viscusi 1992; 2010), and the value attached to the progeny of a victim who has passed 

away (Kuhn et al. 2010).  The VSL is considered an accurate and reliable method to 

determine compensation value for the loss of life, and presents an equally reliable 

measure to use in terms of lives lost as the result of a natural disaster (Viscusi 2009), as 

the VSL is not limited to any one specific cause of death, but rather myriad factors 

(Viscusi et al. 2000). 

An argued limitation of the VSL by Robinson et al. (2010, 4) stated, "The VSL 

does not measure the value of a 'life' or an individual‟s intrinsic worth; rather, it measures 

how individuals trade off income (or spending on other goods and services) and small 

risk changes."  This limitation is recognized here; however, Robinson‟s statement is 

nonetheless countered by recognized experts in the field, as cited above, that the VSL can 
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stand as an indicator of the value of life when such an indicator is useful or required.  In 

2008 the harmonic mean VSL in the United States is seven million USD (Kniesner et al. 

2010; Viscusi 2010).  Harmonic means are used in datasets where all values are positive 

and each value represents a rate, thus the harmonic mean is the average of a set of rates.  

Harmonic mean is preferred over arithmetic or geometric mean in instances when a value 

is financial since the harmonic mean gives equal weight to all values, which eliminates 

the influence of outliers on the final value (Rielly and Schweihs 2004).  The methods 

described in Chapter Three utilize this harmonic mean, and further describe the data used, 

calculation procedures for the TICV and describe the study area to which it was applied.  

Summary of Literature Review 

The concept of vulnerability is important to the study of natural hazards since the 

level of potential harm to a population is a major concern in understanding impact.  

While there are several areas of specific vulnerability studies, such as physical, economic 

and environmental, a focus for this work lies within the context of social vulnerability.  

Demographic factors such as age, race, education and income provide a social snapshot 

of a community.  These data are commonly used to indicate the level of risk of a 

population when faced with some perturbation, such as natural or technological disaster.  

To relate the contribution of these considerations in a quantitative manner, researchers 

routinely report their findings via an index and/or a category value.  Such indicators are 

widely used not only for the purpose of conducting research, but for informing the public 

about the level of potential harm or actual damage done by an anomalous event.  This 

chapter has provided an overview of some of the more commonly known and used 

indices, and how they relate to our understanding of risk and severity. 
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As has been shown, there is an apparent void in the literature where vulnerability 

indicators are used in conjunction with economic data on damage done by a natural 

disaster.  Only recently has the idea of examining physical impact of a disaster as a 

function of population been undertaken (e.g.; Kocin and Uccellini 2004; Gardoni and 

Murphy 2010; Flanagan et al. 2011).  Impact needs to be examined in terms other than 

the physical strength of a geophysical event.  Category values, such as the EFS for 

tornadoes, are often interpreted as an indicator of the of impact resulting from a storm, 

when by design are meant to relate some set of observed or empirically measured damage 

data to physical power.  This misinterpretation thus provides an incomplete picture of the 

actual severity of the event.  An index and category value that is designed to relate the 

level of impact based on the vulnerability of the population affected in addition to the 

monetary losses incurred is needed.  Viewed from a different perspective, one where 

physical strength is not the primary focus, we may better understand how two storms of 

similar magnitude may impart two very different levels of impact on two unique 

communities when the social profile and size of those communities is considered.  This 

perspective fits with the existing body of literature in that the purpose is to further our 

comprehension of the complex relationship between the natural world and its inhabitants. 
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CHAPTER 3 - Data, Methods, and Study Area  

This chapter describes the types of data used in this research, as well as the 

sources from which those data were obtained.  A description of the methods used to 

calculate the damage component, the vulnerability component and finally the overall 

TICV index and TC follows. 

The coterminous United States was chosen as the overall study area due to the 

prevalence of tornado activity; however, states to be included in the index and category 

scheme development were determined by whether or not useable events had occurred in 

them.  Those procedures are explained further in this chapter, and the results are 

presented in Chapter Four.  As the states chosen resulted from the reduction of the initial 

dataset, the study area within the coterminous U.S. (states with usable tornado track data) 

is described following the descriptions of the data and methods used. 

Data Extraction and Dataset Construction 

Before calculating the TICV and TC, data needed to be collected from several 

sources.  Procedures to extract data based on a temporal range, as well as spatial 

considerations, preceded the index calculation procedures.  The spatial criterion was 

whether or not the tornado intersected a community.  The 2000 population census was 

used to calculate the vulnerability component of the TICV.  Tornado data from the years 

2000–2009 were therefore included, as this time frame best matches the most recently 

published census.  Additionally, SPC data on monetary damage is reported as a 

categorical variable prior to 1996 (Simmons and Sutter 2011), which essentially renders 
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it useless for the purposes of this research, since an estimated damage figure in the form 

of a ratio variable was desired to more accurately indicate impact. 

Data Sources and Software Employed 

In order to construct the TICV and TC, two sets of data were used: tornado data 

and census data.  First, data on the location and length of tornado tracks, their intersection 

with a community population and physical area of communities, the number of fatalities 

and the monetary damage done by an event were collected; those data indicate the 

physical impact of the event (Lindell and Prater 2003).  Injuries were not included since 

there is a vast range of the effects of event on injuries (Jones-Lee et al. 1995).  The 

Abbreviated Injury Scale (AIS) and Organ Injury Scale (OIS) rate injuries on a scale of 

one through six, from minor (1) to unsurvivable (6) (Gennarelli 2008; AAST 2011).  The 

SPC tornado record provides no such description or coding which indicates the severity 

of an injury.  Injury calculations are routinely included in mitigation cost-benefit 

analyses, and this inclusion is usually stated as avoided deaths rather than actual cost (or 

estimate of cost) of each injury (Cropper and Sahin 2009).  It is unclear to what extent 

injuries impact a community after a disaster.  Consequently the impact of an injury 

cannot be reasonably described based on the methods presented here as it would have 

introduced a component with a great degree of uncertainty as to its overall contribution to 

the index and category scheme. 

Second, census data--including social, economic, housing and demographic 

characteristics (Table 3.2)--were collected for each of the 25,148 communities in the 

community shapefile; those data indicate a level of vulnerability to an event (Peduzzi et 

al. 2009).  Data were collected from a variety of sources for this research, including the 
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SPC, the NCDC, the United States Census Bureau, the National Atlas, Internet-based 

news articles focusing on specific tornado events or outbreaks and personal 

communication (via email or phone) with county-level emergency management 

personnel (Drittler 2010; Crymes 2010; McGowen 2010; Williams 2010). 

All GIS functions were performed using the Environmental Systems Research 

Institute's (ESRI) ArcGIS suite (ArcMap and ArcCatalog) 9.3; tabular data calculations 

were performed in Microsoft Excel 2007 and 2008, OpenOffice 3.0 and NeoOffice 3.0; 

statistical analyses were performed using Statistics Open For All (SOFA) 0.9.22, 

Statistical Program for the Social Sciences (SPSS) 18.0 and KyPlot 2.0. 

GIS Shapefile Data  

In order to assemble an initial base map, shapefile data containing U.S. states, 

3,116 counties, and 25,148 communities was obtained from the National Atlas, 

henceforward referred to as the states, county (or counties), and community (or 

communities) shapefiles respectively.9  Those data were imported into ArcMap and 

projected using Albers conic equal-area, North American Datum 1983.  An equal-area 

projection was chosen to facilitate the spatial analysis of the vulnerability scores via the 

Moran‟s I test as described further below.  Equal area projections are best-suited for those 

types of spatial analysis, as they accurately preserve the area, and therefore, the distance 

between areas, which is essential to the Moran‟s I statistic.  Individual state maps and 

FEMA Region maps were re-projected into the Universal Transverse Mercator (UTM) 

zones appropriate for their respective locations to facilitate proper cartographic display. 

                                                 
9 All shapefiles used maintained the same name through all selection and exporting 
procedures which resulted in new files. 
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Initial Data Extraction and Reformatting 

Within ArcMap, and from the states shapefile, a select by attributes function was 

performed, with the criterion set as all U.S. states except Alaska, Hawaii the U.S. Virgin 

Islands and the Commonwealth of Puerto Rico, and the result added as a new shapefile to 

the ArcMap document.  The same procedure was performed on the community and 

county shapefiles, to produce new shapefiles containing only communities and counties 

within the coterminous United States.  Point data containing the beginning and ending 

latitude and longitude of all tornado events (points) as well as line data for 26,431 U.S. 

tornado tracks (tracks) from 1950–2009 were obtained through the SPC's GIS data portal 

(SPC 2010) (Figure 3.1).  Once downloaded and decompressed, the points and tracks 

shapefiles were imported into ArcMap.  A select by attributes function was performed, 

with the selection criteria set as all tornadoes that occurred from 2000–2009; the result of 

12,657 tornado events was added to the ArcMap document as a new shapefile named 

tracks, replacing the previous file of the same name. 

Figure 3.1: Tornado tracks, 1950-2009. 
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The focus of this study was to apply the methods described in this chapter to only 

those tornadoes that passed through a community with U.S. Census-defined political 

boundaries (i.e., communities, referred to as places by the Census Bureau) that appear in 

the community shapefile described above.  To reduce the initial tracks subset of 12,657 

tornado events from 2000–2009 down to only those events striking communities, a select 

by location function was performed, with the selection criterion set as all lines from the 

tracks shapefile that intersected the community shapefile.  This resulted in 1,885 

community-intersecting tracks that were exported as a new shapefile and added to the 

ArcMap document (Figure 3.2). 

Figure 3.2: Tornado tracks selected for use in this study. 

 

The use of the methods described above presented a limitation involving the 

accuracy of the SPC points and tracks shapefiles and their intersection with the 

community shapefile, and a problem with tracks that passed through more than one 

community.  Those two problems are referred to here as the point-line-polygon and the 

multiple-community-track-intersect problems, respectively.  It was necessary to correct 
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for these problems in order to properly prepare the dataset for use; these problems and 

their corresponding solutions are described below. 

The Point-Line-Polygon Problem 

In constructing the line to represent the tornado path, personnel at the SPC 

connect the beginning latitude and longitude point to the ending latitude and longitude 

point, resulting in a straight line between the two points for each tornado (Figure 3.3).  

For communities in which the estimated path represents the actual path (or very close to 

it), and the track passes through a community, the data is useable in situ (Figure 3.4). 

In this dataset, the point-line-polygon problem occurred at locations where the 

line connecting the starting and ending latitude and longitude did not closely enough 

estimate the actual track of the tornado.  For example, an actual track bent around a 

community, but the SPC-estimated straight-line path indicated that the track intersected 

the community when it actually did not (Figure 3.5), resulting in a track being included in 

the dataset when it did not actually intersect the community.  Conversely, a track bent 

into a community, but the SPC-estimated straight-line path indicated it missed the 

community altogether, resulting in that community/track shapefile intersection not being 

included in the final dataset when it actually did intersect the community (Figure 3.6). 

To correct as best as possible for instances illustrated by Figure 3.5, the NCDC 

Select-A-State dynamic database was used.  This database permits a user to locate details 

on a specific tornado, including narratives on the event where they are available, by 

entering date and location information into a structured query language (SQL) form.   
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Figure 3.3: Path representation in 

the SPC dataset. 

Figure 3.4: SPC estimated path 

mirrors actual path. 

  
  

Figure 3.5: Actual path bends 

around the community. 

Figure 3.6: Actual path bends into 

the community. 

  
 

Within the ArcMap document, and beginning in Washington state and transecting 

north-south/south-north and moving east through the ArcMap document, information for 

each of the 1,885 tracks were entered into the NCDC query form and the full record for 

each, including any narrative, was inspected and manually compared to the GIS data.  By 

reading the NCDC record's text narrative, a determination was made as to whether or not 

an intersection actually occurred; i.e., did the path actually intersect the community or did 

it remain in an unpopulated area?.  If it was determined that the path intersected the 
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community, the record was flagged as "0" to indicate "usable."10  If the record narrative 

indicated that the tornado remained in an unpopulated area and did not intersect the 

community, it was flagged as "2" to indicate "unusable."  This process was repeated three 

times to ensure to the best of the author's ability that no tracks were misclassified. 

For events similar to the representation in Figure 3.6, the only possible solution 

would have been to read each of the 10,772 narratives of the events not extracted from 

the initial 12,657 dataset of 2000–2009 events, flagged usable events as "0," and re-

integrated them into the initially extracted dataset of 1,885 tracks.  However, it was not a 

goal of this research to correct or validate the SPC tornado records beyond what was 

needed for inclusion in the final dataset, and from which the TICV values and subsequent 

category scheme was created.  As Table 3.1 below and the Chi-squared test discussed in 

the Data Retention section show, the final count of usable tracks (981 usable, 904 

unusable) was sufficient to apply the statistical and calculation methods described in the 

Calculation Methods section in this chapter. 

The Multiple-Community-Track-Intersect Problem 

This problem initially presented itself when the tracks shapefile was spatially 

joined (that is, the attributes of two separate shapefile tables linked by a common spatial 

attribute such as latitude and longitude) to the community shapefile, with the intended 

result to join the proper community population and physical area data from the 

community shapefile to each track in the tracks shapefile.  However, in cases where the 

                                                 
10 “0” was used to indicate useable while “2” was used to indicate unusable.  “1” was 
reserved, as is described below, to indicate tracks what were re-flagged from 2 to 1.  This 
allowed for the final dataset to be coded as either 0 or 1 for useable, while those that 
remained flagged as 2 were eliminated altogether. 
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track intersected more than one community ("long-track"), the select by location tool 

produced erroneous results, randomly reassigning the attributes of the tracks and 

scattering them across various communities in the community shapefile.  To correct for 

this, long-tracks were broken into individual segments, resulting in one segment passing 

through exactly one community, and flagged as "1" to indicate "track was segmented 

manually."  The process used to segment long-tracks into individual tracks is illustrated 

in Figure 3.7, Figure 3.8, Figure 3.8 and Figure 3.10. 

Figure 3.7: Long-track passing through 

communities A, B, and C, flagged as "1." 

Figure 3.8: Original track duplicated. 

  
Figure 3.9: Original and duplicate tracks 

fit to communities A and B. 

Figure 3.10: Track duplicated again and 

fit to Community C. 

  
 

 

Since each new individual segment passing through exactly one community was 

created from the original long-track segment, all of the attributes of that segment were 

also copied in the new segment's attribute row by default.  Each new segment's attribute 
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row was manually edited, with NCDC data on damage in U.S. dollars, the number of 

fatalities, and EF-Scale (or F-Scale if the tornado occurred before 2007) added, and the 

segment re-flagged as "0," or "usable."  Unfortunately, in some cases the NCDC database 

did not provide enough information to make a determination as to what data to add to 

each individual segment.  In these cases, an attempt was made to contact via email or 

telephone the emergency manager or director for the county in which the community is 

located; a total of four county emergency managers were contacted.  If the individual was 

able to locate the damage and fatality information requested, it was added to the proper 

segment's attribute table and the segment was re-flagged as "0," or "usable;" if the data 

was not available, that particular segment was re-flagged as "2," or, “unusable.”  At this 

point, all tornado tracks in the dataset were associated with exactly one community; a 

one-to-one relationship.  These procedures resulted in a final dataset (named 

USTOR2000) of 981 usable events that intersected a community (Table 3.1, Figure 3.11 

and Figure 3.12).  

Table 3.1: Summary of tracks identified as usable or unusable. 

 

Initial track/community shapefile intersect (n=1,885) 

Flagging key: 0 = usable, 1 = segmented manually, 2 = unusable 

Initially Flagged as 0  904 

Initially Flagged as 1 (long-tracks) 106 

Initially Flagged as 2 875 

New segments created from long-tracks and re-flagged as 0 77 

New segments created from long-tracks and re-flagged as 2 29 

Total usable tracks 981 
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Figure 3.11: USTOR2000. 
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Figure 3.12: USTOR2000 through tornado alley. 

 

Data Retention 

Through the course of the data extraction and cleaning methods, many tracks 

were eliminated from inclusion in USTOR2000 due to the location of the estimated path 

(unpopulated area paths), or lack of clear information as to whether or not the track 

actually passed through a community.  Of the 12,657 tracks from 2000–2009, 981 from 

the originally extracted set of 1,885 were retained (see Appendix A, Table A.1), for an 

overall retention percentage in the U.S. of 7.75.  Of the states with at least one track 

included, some states exhibited high retention values while some showed very low 
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values.  Colorado experienced 405 tornadoes during the study period, of which seven 

were retained, for a retention percentage of 1.73; the lowest of non-zero values.  Kansas 

witnessed 1,121 tornadoes during the study period, yet only 20 events were retained; a 

percentage of 1.78.  South Dakota showed the third lowest retention figures, with eight of 

319 events included in USTOR2000, for a percentage of 2.51 (Appendix B, Table B.1).   

The seemingly low retention percentages in these three states, among others, can 

be stated as a function of both frequency of tornado touchdowns and density of politically 

defined communities (Figure 3.13 displays U.S. communities in terms of their physical 

size for reference). 

Figure 3.13: U.S. community size and distribution. 

 

For example, a visual inspection of events occurring in Kansas revealed that a 

majority of the tornadoes from 2000–2009 struck in the western half of the state, and 

mostly in unpopulated areas (Figure 3.14).  Tornado tracks that struck communities, 

where the data was useable, were included, while the remainders were not.  The low 

retention percentage in Kansas is less a function of inadequate methods pertaining to 

track inclusion and more a function of the low population density and relatively few (and 
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smaller) communities in much of the state and the geographical location of tornado 

tracks.  A similar argument can be made for Colorado and South Dakota.  Conversely, 

states such as Maryland (Figure 3.15), Florida, Tennessee and Indiana exhibit retention 

percentages of 18.82, 18.79, 18.41, and 16.96 respectively.  These values are on the high 

end of the spectrum due to a larger number of events occurring in states with a higher 

density of communities. 

To determine if the number of retained events per state resulting from these 

methods represented a statistically adequate sample of the original 12,657-count dataset 

(all U.S. tornadoes, 2000–2009), a chi-square test was performed.  States with no 

observed events (seven total, see Table A.1) were removed before calculation because 

chi-square assumptions are based on no zero-value observations.  The chi-square value of 

314.23 exceeded the critical value of 73.40 (p = 0.001, df = 40) for the remaining 41 

cases, indicating USTOR2000 was adequately representative of the initial dataset. 

Figure 3.14: Tornado tracks in Kansas, 2000–2009.  
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Figure 3.15: Tornado tracks in Maryland, 2000–2009. 

 

Tabular Census Data 

 Census data were collected using the 2000 U.S. Census Download Center (Census 

2010).  The variables chosen to serve as indicators of vulnerability characteristics are 

routinely found in the literature (e.g., age, gender, race, income, housing type and tenure, 

education, marital status and employment) (Raphael 1986; Young 1998; Oliver-Smith 

and Hoffman 1999; Tierney et al. 2001; Wisner 2001; Burby et al., 2003; Cutter et al. 

2003; Glavac et al. 2003; Handmer 2003 Wisner et al. 2004).  Summary files one and 

three were accessed via the census download center, and 17 summary file tables 

downloaded.  Using SPSS, 375 variables from those tables were placed in a correlation 

matrix, to identify variables that were highly correlated, and further identify a subset of 

variables to be used in constructing the community vulnerability score.  A total of 19 

variables were chosen to represent community vulnerability via correlation coefficients 

and the vulnerability literature as cited above.  The variables were entered into a 

Microsoft Excel spreadsheet and either used as raw values or normalized per capita by 
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population of the community, as percentages of the community population, or as density 

functions by the size of the community in square kilometers.  Variables were then 

assigned descriptive names and imported into an SPSS table (Table 3.2).   

 The next section of this chapter details the calculation procedures employed in 

deriving the TICV and TC, including calculation of the damage score, the community 

vulnerability score and the combination of those two measures to produce the measures 

central to this research. 

Table 3.2: U.S. Census summary files and tables downloaded, variables used and 

descriptive identifiers. 

Summary 
File/Table Table Description 

Total 
Variables 
in Table 

Variable(s) used Identifier Used as 

SF1-H2 Urban and rural housing units 3 Total  housing units DENSSQKM 
Density 
function 

SF1-P3 Race 76 Percent African-American PCTAFAM Percentage 

SF1-P11 
Hispanic or Latino, total 
population 

1 Percent Hispanic PCTHISP Percentage 

SF1-P12 Sex by age, total population 53 
Percent female 
Percent under 5 
Percent over 65 

PCTFM 
PCTUNDER5 
PCTOVER65 

Percentages 

SF1-P13 
Median age by sex, total 
population 

3 Median age 
 
MEDIANAGE 
 

Raw values 

SF1-P17 Average household size 1 
Average number of people per 
household 

AVGPPLHH Raw values 

SF1-P18 
Household size, household type, 
and presence of own children 
under 16 years of age 

19 
Percent female householders, 
no husband present, with own 
children 

PCTFMHHNHWC Percentage 

SF1-H4 Tenure (household) 3 Renter-occupied houses PCTROH Percentage 

SF3-H30 Units in structure (housing types) 11 
Percent housing units that are  
mobile homes 

PCTMOBHH Percentage 

SF3-H76 
Median value (USD), specified 
owner-occupied housing units 

1 
Median dollar value of owner-
occupied houses 

MVOOH Raw values 

SF3-P37 
Sex by educational attainment, 
population age 25 years and 
older 

37 
Percent  population  over 25 
with no high school diploma 

PCT25NHSD Percentage 

SF3-P43 
Sex by employment status, 
population age 16 years and 
older 

17 
Percent population 
unemployed, age 16 and older 

PCT16UNEMP Percentage 

SF3-P50 
Sex by occupation, employed 
civilian population age 16 and 
older 

96 
Percent population employed 
in the service industry 

PCTSVCIND Percentage 

SF3-P52 Household income 18 
Percent households earning 
$75,000 per year or more 

PCTHH75K Percentage 

SF3-P53 Median household income 1 Median household income MHHI Raw values 

SF3-P82 Per capita income 1 Per capita income PCINCOME Per capita 

SF3-P87 Poverty status by age 18 
Percent individuals below the 
poverty level 

PCYPOVERTY Percentage 
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Calculation Methods 

Upon completion of the data extraction and cleaning procedures, the data were in 

the proper format to calculate the TICV.  This was accomplished by:  

1. Calculating the damage component, consisting of the number of fatalities 

and the monetary damage recorded for a community normalized by 

population; 

2. Using principal components analysis to calculate a community 

vulnerability score for each community in the dataset; 

3. Combining the previous two measures to calculate the TICV; 

4. Using Jenks natural breaks to construct the TICV category scheme based 

on the array of TICV values. 

 

The remaining sections in this chapter describe those procedures, concluding with 

a description of the study area within the coterminous U.S. (determined as described 

above).  For analysis purposes, each of the tornado tracks included were associated with 

exactly one community.  As such, the term “events” refers to one track/community 

intersection, and does not refer to the entire length of a track that may have struck 

multiple communities, as those were segmented into discrete units. 

Damage Score: Fatalities and Monetary Damage 

The number of fatalities and the monetary damage resulting from a tornado event 

make up the damage component (D) of the TICV.  At least one fatality occurred in 61 

(6.2 percent) of the 981 events in the dataset.  To convert the fatality figure for an event 

to a monetary value, the number of fatalities resulting from a particular event was 
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multiplied by the mean Value per Statistical Life (VSL) of seven million 2008 USD.  The 

damage figure per event was available both in the tabular and GIS data taken from the 

SPC, although the figures reported in the SPC GIS shapefile attribute table were reported 

as categorical values (1=1,000,000 through 1,999,999 million dollars, 2=2,000,000 

through 2,999,999 dollars, and so on).  Because of this difference, the tabular SPC data, 

which reported a more accurately estimated ratio variable damage figure, was spatially 

joined to the GIS data to populate the damage column with that more accurate damage 

data.  In the case of long-track events that were segmented into discrete tracks associated 

with exactly one community, the data were taken from the NCDC record and/or 

narrative, news reports, FEMA reports, county emergency managers or a combination of 

those sources.  The damage figures were then adjusted for inflation to 2008 dollars in 

order to maintain temporal consistency with the VSL.  The inflation-adjusted fatality 

figure was then added to the inflation-adjusted damage figure, and the sum normalized by 

the population of community c to arrive at Dc.  This procedure is given by: 

 

Equation 3.1: The damage component of the TICV. 

[ ( )] /c c c cD E F VSL Pop   

where  

Dc = TICV damage component for community c 

Fc = fatalities in community c 

VSL = 2008 Value of Statistical Life constant of seven million USD 

Ec = monetary damage done to community c 

Popc = 2000 U.S. Census population of community c 
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Community Vulnerability Score  

Principal Components Analysis  

 The census data collected for each of the 25,148 communities in the U.S. (see 

Table 3.2) was imported into SPSS.  All U.S. communities were used to produce category 

breaks for vulnerability, into which the communities in USTOR2000 would fall.  This 

allowed for the vulnerability of the communities in USTOR2000 to be represented by 

their vulnerability score (as explained below) as compared to all U.S. communities, rather 

than only the 981 within the TICV dataset.  A principal components analysis (PCA) was 

performed using varimax rotation to produce a factor solution including only eigenvalues 

greater than one.  Varimax rotation seeks to place each factor as close to orthogonal as 

possible to all other factors considered, and further produces high variable loadings on a 

single factor.  Using eigenvalues greater than one is a standard method by which the most 

meaningful factor groups are included in the explanation of variance about the dataset as 

a whole (Kaiser 1958).  The rotated solution produced 19 components in six factors that 

explained 71.05 percent of the total variance (Table 3.3). 

Vulnerability Score Calculation 

To calculate the vulnerability component for each community in USTOR2000, 

census data was extracted and placed into a new spreadsheet.  The data were then 

arranged according to factor group from highest to lowest eigenvalue.  Using the 25,148 

communities as the rank array, which is the column of data by which an individual value 

is compared in order to determine its percentile position within that column, the 

percentile rank of each census datum for each community in the community dataset was 

calculated.  
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Table 3.3: PCA results. 

Factors and 
Components 

Factor 
Loading Eigenvalue 

Percent of 
Variance 

Percent of 
Cumulative 

1. Economic 
MHHI  
PCTHH75K  
PCINCOME 
MVOOH 
PCTPOVERTY 

 
0.943 
0.931 
0.929 
0.882 

-0.491 

4.02 21.15 21.15 

2. Age 
MEDIANAGE 
PCTOVER65 
AVGPPLHH 
PCTUNDER5 

 
-0.896 
-0.869 
0.831 
0.753 

3.26 17.17 38.32 

3. Gender 
PCTFMHHNHWC 
PCTAFAM  
PCTFM 

 
0.758 
0.738 
0.515 

1.93 10.14 48.46 

4. Employment 
PCT16UNEMP 
PCTSVCIND 

 
0.818 
0.757 

1.55 8.17 56.62 

5. Housing and 
Density 
DENSSQKM 
PCTROH  
PCTHISP 

 
 

0.767 
0.606 
0.475 

1.42 7.48 64.10 

6. Housing and 
Education 
PCTMOBHM 
PCT25NOHSD 

 
 

0.669 
0.628 

1.32 6.95 71.05 

  
 
Four of the 19 components needed a further adjustment before proceeding with 

the TICV calculation: PCTHH75, MMHI, PCINCOME and MVOOH (see Table 3.2).  In 

calculating the percentile rank for those variables, a higher rank (closer to 1) indicates 

higher vulnerability.  However, an increase in percentile rank should indicate a decrease 

in vulnerability, not an increase.  For example, higher MMHI (median household income) 

equates to lower vulnerability, an inverse relationship, whereas fifteen variables exhibit a 

direct relationship between their rank value and an increase in vulnerability.  For those 

four components where an increased percentile rank score decreased the overall 
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vulnerability score rather than increased it, the calculated percentile rank value was 

subtracted from 1.00  in order to invert the component (see Cutter et al. 2010; Flanagan et 

al. 2011). 

Each percentile rank value was then weighted, with the eigenvalue for the factor 

in which that component belonged serving as the weighting value.  For each of the six 

factor groups, the sum of the weighted percentile ranks for each component within that 

factor group was found.  Finally, for each community in the community dataset, the sum 

of each of the six factor group's weighted percentile rank sums was found, resulting in the 

vulnerability component for community c.  This procedure is given by: 

Equation 3.2: The vulnerability component of the TICV Index. 

6 19

1 1

[ ( )]c c k

k n

V rank n 
 

   

where 

Vc = TICV vulnerability score component for community c 

β rank (nc) = percentile rank score of vulnerability component n in 

community c (percentile rank array = 25,148 U.S. communities, 

U.S. Census, 2000) 

λk = principal components analysis eigenvalue for factor k  

Tornado Impact-Community Vulnerability Index (TICV) 

Using Dc and Vc calculated as described above, the TICV is given by: 11  

                                                 
11

 The square root of the product was used in order to transform the array of large 
numbers that grouped heavily towards zero. 
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Equation 3.3: The TICV. 

c c cTICV D V   

where 

TICVc = the Tornado-Community Vulnerability Impact Index value for 

community c 

 

The array of TICV values was then imported into the tracks shapefile attribute 

table in order to calculate the category break values, on [0, 5], where zero indicates the 

least impact and five indicates the most severe.  Finally, Jenks natural breaks (Jenks 

1967) was applied to the TICV column, defining the six TC categories.  The calculation 

process is summarized in Figure 3.16. 

Figure 3.16: Summary of the TICV and TC calculation process. 

 

Study Area 

The states included in USTOR2000 resulted from the data extraction procedures 

described above.  Each “lower-48” state in which a useable tornado track occurred was 
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included in the study area: this consists of 41 of 48 states, with Montana, Oregon, 

Nevada, West Virginia, Delaware, Rhode Island and Vermont excluded (Figure 3.17).  

The local Moran‟s I statistic is used in Chapter Four to identify clusters of vulnerable 

locations.  As that statistic is based on location, comparing neighbors with similar 

characteristics, including Alaska and Hawaii would have caused the results to be 

artificially “pulled” towards those states.  Due to their physical separation from the 

coterminous U.S., Alaska and Hawaii therefore were eliminated from consideration.  It 

should be noted, however, that since the vulnerability score was calculated using 

percentile ranks for all communities in the coterminous U.S., that extent marks the study 

area as a whole, although not all states, as listed above, contributed tornado events to the 

dataset used in constructing the TICV and TC. 

Figure 3.17: Study area. 
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Figure 3.18: FEMA Regions used in Chapter Four. 

 

. 

Figure 3.18 displays the ten FEMA regions used in Chapter Four to identify 

smaller areal units which facilitate closer examination of tornado-community 

intersections.  These regions were chosen for analysis as they represent the official 

regions used by FEMA and are easily recognized by decision makers who may wish to 

employ or further explore the TICV values and/or categories in those regions and their 

states.  USTOR2000 could also serve as a baseline by which to measure change between 

the TICV and TC values based on the 2000 U.S. census with those based on the recent 

2010 census.  Finally, FEMA regions serve to delineate vernacular regions within the 

U.S. that are commonly thought to be relatively homogeneous in terms of the social 

profiles of communities (Newman 2006).  

The dichotomy between urban and rural is much-studied and well-recognized 

within the context of geography (Woods 2005).  Norton (1984, 103) stated that 

geographers have, “characteristically regarded rural and urban settlements as separate in 
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order to facilitate research.”  Tornadoes that remained in unpopulated areas (not 

necessarily those that struck rural communities) were not considered in this research.  

Sherrib et al. (2010, 236) stated that, “‟communities‟ are social constructs that need to be 

defined on a case-by-case basis,” and the definition chosen here was that of communities 

designated as places by the U.S. Census and included in the U.S. communities shapefile.  

While damage can certainly occur to homes and businesses, and fatalities can occur as a 

result of a tornado outside of those politically defined aeral units, the impact is generally 

felt at the household level, which was considered too small a unit of analysis for the 

purposes of this research.  Donner (2007) examined the relationship between rural 

(identified here as “unpopulated areas”) tornadoes and fatalities (among other variables) 

and found that rural areas are less vulnerable to tornadoes, and fatalities occur with less 

frequency than in urban areas.  Additionally, Simmons and Sutter (2011, 218) stated that, 

“the overwhelming proportion of casualties occur when tornadoes strike populated 

areas,” and that, “tornadoes striking rural areas are less likely to result in damage” (224).  

The U.S. population has become increasingly urban and less rural (Cromartie 2001, 2002; 

McGranahan and Beale 2002, Harrington 2005), furthering the justification to focus on 

populated areas (communities) as the unit of study for this research.  Finally, due to more 

open area and sparser populations, many rural tornadoes may even go completely 

unnoticed and unrecorded in the SPC database (Anderson et al. 2007). 
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CHAPTER 4 - Results and Discussion 

This chapter presents the results of the calculation procedures used to arrive at the 

TICV and TC scores.  Results for the damage component (raw damage values) and 

damage score (adjusted raw values) are presented first, followed by vulnerability scores 

and categories.  The TICV and TC scores are discussed next, as well as their relationship 

to the Enhanced Fujita Scale.  FEMA Regions I-X are used to frame regions for 

discussion. 

An examination of the tornado events and associated TICV and TC scores across 

four separate communities is included here.  These comparisons are made to highlight the 

unique effects different disaster events can have on communities.  These examples also 

indicate that the TICV can not only serve as an indicator of the level of impact, but can 

better categorize communities hit hard by events that may not register high values on the 

EFS.  The chapter concludes with the identification of potential practical uses for the 

TICV and TC.  

TICV Components, Scores, and Categories 

Damage Components and Scores 

At least one fatality occurred in 62 (6.3 percent) of the 981 events considered in 

this study, with a mean occurrence of 0.23, and a maximum of 20 (Evansville, IN, 6 

November 2005).  The damage component12 ranged from zero to $648M (Arlington, TX, 

                                                 
12 The damage component is the raw damage value, as calculated by the VSL times 
fatalities plus inflation-adjusted monetary damage. 
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28 March 2000), with an approximate mean of $7 million, a median of $75,000, a 

standard deviation of $32.4 million, and a variance of over 108.  Summary statistics thus 

are highly skewed by a few very high-damage events.  The damage score13 ranged from 

zero to 434,783 (Hallam, NE, 22 May 2004), with a mean of 2,292, a median of 7.98, a 

standard deviation of 18,015, and a variance of 324,883,758.  Nearly one-third of the 

events in USTOR2000 (308 of 981; 31.4 percent) returned a damage score of zero, 

resulting in a Zipfian (power law) distribution14 for both the raw damage component and 

the damage score (Figure 4.1).  As noted by Brooks and Doswell (2001), property 

damages resulting from a tornado are harder to reduce than fatalities once a warning has 

been issued; people can move out of the way, structures cannot.  Simmons and Sutter 

(2011, 213) further suggested that, “with winds that can exceed 200 miles per hour and 

the added force of tornado suction vortices, property damage is seemingly impossible to 

avoid.”  For this reason, the much higher percentage of damage occurrence compared to 

the incidence of at least one fatality becomes clear.  The distribution of these findings are 

consistent with the relationship between tornado intensity and damage in the United 

                                                 
13 The damage score is the damage component normalized by population of that 
particular community. 
 
14 Zipfian distributions, more commonly known as power law distributions, or the “80-20 
rule,” follow a pattern in which a large number of observed values fall within a small 
range of frequency for a given phenomenon.  The frequency of damage scores here group 
heavily between zero and 250, yet range up to 434,783.  This distribution follows the 
general pattern of the Zipf-Mandelbrot law, with a heavy left grouping and a long right 
tail.  These distribution patterns are commonly displayed using log-log plots which are 
calculated using the base 10 logarithm of the values along each axis and re-plotting the 
result (another common display option is the quantile-quantile plot).  Log-log plots 
display a linear pattern of frequency rather than a frequency where the phenomena under 
study is related to a value raised by some exponent.  Non-linear results on a frequency 
graph are generally very difficult to interpret as they concentrate heavily on one side of 
the graph (Rapoport 1982; Popescu et al. 2010). 
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States, with stronger events generally producing greater damage (Brooks and Doswell 

2001) and more frequently resulting in death (Simmons 2005; Ashley 2007) but 

occurring less frequently than weaker events (Dotzek et al. 2003; McCarthy 2003). 

Figure 4.1: Log-log, damage score frequency. 

 

Vulnerability Scores 

The vulnerability scores displayed a normal distribution with a minimum score of 

11, a maximum of 39 (Table 4.1), a mean of 24.77, a median of 24.99, a standard 

deviation of 5.53 and a variance of 30.65.  The frequency histogram in Figure 4.2 was 

created using whole numbers 11 through 39 (inclusive) as frequency count categories for 

the array of vulnerability scores. 

A Moran's I test was conducted based on the vulnerability scores and plotted 

using the Z-scores (measures of standard deviation) to spatially display any pattern 

among the communities and within regions included in USTOR2000 (Figure 4.3).  

Results show high levels of vulnerability (Z-score standard deviation >2.58) from east 

Texas (Dallas-Fort Worth metro area, Region VI) through deep southern states, including 

Arkansas, Louisiana, South Carolina, Mississippi, Alabama and Georgia (FEMA Region 

IV).  The latter three also show mostly low to moderate resiliency, the inverse of 
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vulnerability to natural hazards as described by Cutter et al. (2010) (Figure 2.3), which is 

in agreement with the high vulnerability scores shown here.  As indicators of social 

vulnerability typically include race (minorities exhibit higher levels), poverty and income 

(the less affluent exhibit higher levels) and education (the less-educated exhibit higher 

levels) among others such as social class (Worts et al. 2010), it follows that areas with 

higher concentrations of African-Americans, Hispanics, the less-affluent and the less-

educated will exhibit increased levels of vulnerability.  Other areas with high Z-score 

values, indicating high vulnerability, include the Minneapolis-St. Paul, MN, metro area 

and surrounding suburbs, the Milwaukee WI-Chicago, IL, corridor extending to Madison, 

WI (Region V), and the Baltimore, MD, metro area (Region III); again, all areas with 

high concentrations of those considered to be more vulnerable to disasters.   

 

Figure 4.2: Frequency of categorized vulnerability scores. 
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Table 4.1: Vulnerability scores and corresponding descriptors. 

Vulnerability Score Range Frequency Vulnerability Level 

11-18 139 Low 

19-22 230 Low-Moderate 

23-26 250 Moderate 

27-30 211 Moderate-High 

≥ 31 151 High 

 
 

Figure 4.3: Community vulnerability by location of track-community intersection 

(tracks greatly enlarged for visibility). 
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TICV Scores  

The TICV then resulted from the square root of the product of the damage and 

vulnerability scores.  Scores ranged from zero to 2,743 (Hallam, NE, 22 May 2004), with 

a mean of 84.48, a median of 13.96, a standard deviation of 222.87, and a variance of 

49,669.  Figure 4.4 displays the frequency distribution of TICV scores, with those scores 

grouped heavily towards the low end, and comparatively few exceeding a score of 250.  

A log-log plot of TICV scores and frequency (Figure 4.5) shows a pattern similar to the 

damage score, again resulting in a Zipfian distribution.   

Figure 4.4: TICV score frequency. 

 

These results suggest that the TICV score is heavily influenced by the damage 

score, with the vulnerability score exerting a lesser influence.  The standard beta 

coefficients resulting from a multiple regression analysis, with TICV score as the 
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influence, with r = 0.999 (p= 0.000) and r = 0.179 (p = 0.000) for TICV scores correlated 

to damage and vulnerability scores respectively.  It could be argued that the vulnerability 

score is not a necessary component of the TICV; however, the concept of vulnerability as 

calculated by indicators such as those used here relate to the overall impact on the 

community post-event, and does influence the TICV score.  Although its influence may 

be less than that exerted by the damage score, vulnerability nonetheless relates to the 

concept of community impact.  Vulnerability analysis results such as these can be seen 

not as a measure of the direct physical impact, but rather the overall social profile of the 

community and that the physical impact is heightened by higher vulnerability. 

Figure 4.5: Log-log, TICV score frequency. 

 

TICV Categories 

The creation of category schemes is well established and frequently employed  

(e.g., the EFS for tornadoes, the Saffir-Simpson scale for hurricanes, the Modified 
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Nardo et al. 2008).  Grouping the TICV scores into discrete categories allows those 

measures to be better understood, since the initial scores were not distributed normally 

(Figure 4.5), thus displaying a grouping which presents itself as difficult to interpret 

quickly. 

Table 4.2: TICV categories. 
 

TICV Score Range TICV Category Impact Descriptor 

0 0 None 

1 - 181 1 Light  

182 - 390 2 Moderate 

391 - 720 3 Heavy  

721 - 1,300 4 Severe  

≥ 1,301 5 Devastating  

 

Figure 4.6: Frequency of TICV categories. 
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The frequency of the categories show a similar distribution to the TICV scores, as should 

be expected, since the category breaks were based on those scores; the distribution also 

conforms to the Zipf-Mandelbrot Law (Figure 4.6). 

TICV Score and Category Relationship to Fujita Scale 

Since the EFS15 is the standard scale by which tornado strength is rated in the 

U.S. (Potter 2007; Doswell et al. 2009), it seemed necessary to examine the relationship 

between the EFS and the TICV results presented here.  Spearman's rho was used to 

correlate EFS values to vulnerability, damage and TICV scores, and to correlate the TC 

to the EFS in USTOR2000.  The correlation between EFS and vulnerability scores was 

low, with r = 0.137 (p = 0.000), similar to the relationship between the vulnerability and 

TICV scores as shown above.  Correlating the damage scores to EFS values produced a 

result of r = 0.535 (p = 0.000).  A relatively high correlation should be expected, since 

the damage score consists of actual physical damage estimates, and wind speed estimates 

(EFS) heavily influences those data (Edwards et al. 2010).  The correlation of the TICV 

to the EFS produced an interesting result, with r = 0.535 (p = 0.000); the same value 

exactly (to three decimal places) as the correlation between the damage scores and EFS 

values.  These results suggest the damage score is the primary driver of the TICV. 

The TC was compared to EFS values for each event in USTOR2000 to further 

examine the relationship between the two measures.  Overall, the TC scores follows the 

traditional magnitude versus frequency pattern (Frequency  1/Magnitude); with many 

events causing little or no damage (none to light impact) and few events causing 

                                                 
15

 Although the EFS was not implemented until 2007, in order to maintain continuity it is 
used from this point on to refer to the Fujita Scale rating for all events in USTOR2000. 



 92 

extensive damage (heavy to devastating impact).  TC0 contains 306 of the 981 events 

(31.2 percent), and TC1 contains 564 of the 981 events; 57.5 percent, 88.7 percent 

combined between those categories.  Table 4.3 displays the TICV category values 

compared to the number of EFS events that occurred in that category, as well as the 

percentage of the total (n = 981).  TC0 consists of events resulting from EF-0 through 

EF-3 events, with no EF-4 or EF-5s resulting in a TC0 event.  TC1 events resulted from 

EF-0 through EF-4s, with the plurality (and near-majority) resulting from EF-1 events 

(256 out of 564; 45.39 percent).  TC2 events also resulted from EF-0 through EF-4 

events, with the plurality resulting from EF-2s.  TC3 events resulted from EF-1 through 

EF-4s, with exactly half occurring as a result of an EF-3.  TC4 events resulted from EF-2 

through EF-5 events, with the majority resulting from EF-3 tornadoes (10 of 19; 52.63 

percent).  Finally, TC5 events resulted from EF-3 through EF-5s, with two of the four 

resulting from an EF-4 event.  The only EF-5 event in USTOR2000 resulted in the second 

highest TICV score, and one of only four TC5 events: Greensburg, Kansas. 

Table 4.3: TICV category totals and corresponding EF-Scale. 
 

 

TICV  - EFS EF-0 EF-1 EF-2 EF-3 EF-4 EF-5 Totals 

TC0 
179 

(18.25%) 
88 

(9.00%) 
29 

(2.96%) 
10 

(1.01%) 
0 0 

306 
(31.20%) 

TC1 
188 

(19.16%) 
256 

(26.10%) 
85 

(8.66%) 
29 

(2.96%) 
6 

(0.61%) 
0 

564 
(88.70%) 

TC2 
1 

(0.10%) 
10 

(1.01%) 
22 

(2.24%) 
19 

(1.94%) 
4 

(0.41%) 
0 

56 
(5.71%) 

TC3 0 
3 

(0.31%) 
9 

(0.92%) 
16 

(1.63%) 
4 

(0.41%) 
0 

32 
(3.26%) 

TC4 0 0 
4 

(0.41%) 
10 

(1.01%) 
3 

(0.31%) 
2 

(0.20%) 
19 

(1.94%) 

TC5 0 0 0 
1 

(0.10%) 
2 

(0.20%) 
1 

(0.10%) 
4 

(0.41%) 

Totals 
368 

(37.51%) 
357 

(36.39%) 
149 

(15.19%) 
85 

(8.66%) 
19 

(1.94%) 
3 

(0.31%) 
981 
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Simmons and Sutter (2011) stated that tornadoes, while generally not large 

enough to affect entire regions, can, however, devastate small communities.  As defined 

by Fujita (1971) and Grazulis (1993), weak tornadoes (EF-0 and EF-1) generally 

produced events of lesser impact.  However, in three cases, a weak tornado (EF-1) 

produced heavy impact.  EF-2 and EF-3 tornadoes were powerful enough to have caused 

15 of the 25 events (60 percent) rated at TC4 or TC5; the two highest categories resulting 

from these methods.  No violent tornado (EF-4 or EF-5) resulted in a TC0 event.  But in 

examining the EF-4 column, one sees that violent tornadoes of that magnitude caused a 

wide range of impacts; from light (TC1) to devastating (TC5).  While the inverse 

relationship between magnitude and frequency can be seen in these results, Table 4.3 also 

displays exceptions.  From this it can be concluded that a tornado does not have to be a 

violent EF-4 or EF-5 to have a severe or devastating impact on a community.  

Conversely, weaker tornadoes can inflict greater impact than their seemingly low EFS 

values (EF-1 and/or EF-2) may indicate. 

The correlation between the TC and the EFS was found to be r = 0.533 (p = 

0.000), indicating a similar relationship to the EFS as the TICV scores before category 

breaks were applied.  Given the methods presented here, and that the TC was based on 

the TICV scores, this similarity in rho values was expected.  In relation to the EFS, the 

correlation between that scale and the TICV scores and the TC indicated that while both 

scales provide an indicator of impact, the TICV and TC provide a different perspective of 

the event that the EFS, by design, does not.  Larger tornadoes are generally linked to 

more damage and deaths (Brooks and Doswell 2001), so it follows that there should be a 

relationship between the two values.  However, the purpose of this research was to 
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construct an indicator that describes the impact of a tornado event from a perspective 

unique to the event and the community affected.  While a correlation was found, it is not 

strong enough to support a claim that the EFS and the TICV are providing near-identical 

measures of the same event.  This supports the presupposition that the TICV and TC, as 

an indicator specific to the social profile of, and tornado damage done to, an individual 

community is unique.  Furthermore, these indicators can stand as separate from the EFS, 

as evidenced by weak tornadoes producing heavy impact and violent tornadoes producing 

light impact; the TICV and TC offer distinctive insight into the impact of a tornado event.  

TICV Components, Scores and Category Results by FEMA Regions 

Each regional section contains a summary table of the median, minimum and 

maximum values for the TICV components; a complete USTOR2000 results table 

appears in Appendix B, Table B.1.  Within the following ten subsections of this chapter 

that follow, FEMA Regions I, II, VIII, IX and X are discussed first, due to the similarities 

among them in terms of low total numbers of events and range of TICV and TC scores.  

Discussion of FEMA Regions III through VII follow.  Figure 4.7 displays all tornado 

tracks from 2000–2009 overlaid on FEMA Regions, and Figure 4.8 shows USTOR2000 

by TC score overlaid on those same regions.  Visually, it is clear that the majority of 

tornado events in the U.S. occur in FEMA Regions IV, V, VI and VII.  The purpose of 

describing TICV values by region is to: 

1. utilize known and recognizable regions to group what appear to be clusters 

of tornado tracks; 

2. determine whether higher or lower levels of impact tend to group by those 

regions. 
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Figure 4.7: All tornado tracks, 2000-2009, by FEMA Region. 

 

 

Figure 4.8: All USTOR2000 tracks, by FEMA Region. 
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FEMA Region I: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island 
and Vermont  

 

Tornadoes are relatively rare occurrences in the New England area (Figure 4.9), 

with a total of just 58 occurring in FEMA Region I from 2000–2009.  In USTOR2000, 

there were only seven usable events total (12.07 percent retained), three in Connecticut, 

two in Massachusetts, and one each in Maine and New Hampshire (Table 4.4).  There 

were no fatalities in this region, and damage was noted in just three of the seven events, 

ranging from $10,000 for a damage score of 4 (Shelton, CT, 31 July 2009) to $1,695,000 

for a damage score of 57 (Franklin, MA, 21 August 2004).  

Figure 4.9: FEMA Region I - CT, MA, ME, NH, RI and VT.  

 

Vulnerability scores ranged from a minimum of 14, low, to a maximum of 26, 

moderate .  A damage score of 57 resulting from $1.695M in damage to Franklin, MA, 
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earned this event the highest TICV score in the region, at 28, TC1.  Overall, four of the 

seven events were rated as TC0, with the remaining three rated as TC1.  All events were 

either EF-0 or EF-1s.  When considering all tornadoes, no event rated higher than EF2 on 

the EFS.  Low to moderate vulnerability combined with relatively small damage scores 

resulted in low category ratings for communities in this region, indicating these 

communities can absorb events that result in relatively small damage amounts.  

 
Table 4.4: FEMA Region I median, minimum and maximum component values, 

scores and category. 

State Event Total 
Median 

Minimum 
Maximum 

Fatalities Damage 
Component (USD) 

Damage 
Score Vulnerability Score TICV 

Score TC 

CT 3 
Med. 
Min. 
Max. 

0  
0 
0 

10,000 
0 

750,000 

4 
0 
28 

17 
15 
19 

8 
0 
22 

1 
0 
1 

MA 1 
Med. 
Min. 
Max. 

0  
0 
0 

847,500 
0 

1,695,000 

28 
0 
57 

17 
14 
20 

0 
0 
28 

0.5 
0 
1 

ME 1 
Med. 
Min. 
Max. 

0  
0 
0 

0 
0 
0 

0 
0 
0 

26 
26 
26 

0 
0 
0 

0 
0 
0 

NH 1 
Med. 
Min. 
Max. 

0  
0 
0 

0 
0 
0 

0 
0 
0 

22 
22 
22 

0 
0 
0 

0 
0 
0 

RI 0  -- -- -- -- -- -- 

VT 0  -- -- -- -- -- -- 

Region 7 
Med. 
Min. 
Max. 

0  
0 
0 

0 
0 

1,695,000 

0 
0 
57 

19 
14 
26 

0 
0 
28 

0 
1 
0 

 

FEMA Region II: New Jersey and New York 

Events in FEMA Region II (Figure 4.10, Table 4.5) produced results similar to 

Region I.  From 2000–2009 there were no fatalities stemming from 90 reported 

tornadoes, of which, only four were considered usable in this research (4.44 percent 

retained), two in New York and two in New Jersey.  Damage estimates were at a low of 

$75,000 in both Hilton (25 July 2009) and Unionville (29 July 2009), NY, for damage 
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scores of 12 and 139 respectively.  The highest damage recorded was $1.17M in Trenton, 

NJ (23 September 2003), for a damage score of 13.  Vulnerability scores ranged from 19, 

low-moderate, to 31, high.   

The highest TICV score in the region (59, TC1) was attached to the Unionville, 

NY, event.  Although a small community (population 536), the event scored as TC1 due 

to the extremely small damage amount and only a moderate level of vulnerability.  All 

four of the events in this region were rated as TC1 events.  Very few tornadoes occur in 

this region (218 from 1950–2009, with only 20 higher than F or EF2), and population 

centers (with the obvious exception of the New York metro area) are spread out sparsely 

over a wide area, which reduces the probability that a large-impact event will occur. 

Figure 4.10: FEMA Region II - NJ and NY. 
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Table 4.5: FEMA Region II median, minimum and maximum component values, 

scores and category.  

State Event Total 
Median 

Minimum 
Maximum 

Fatalities 
Damage 

Component 
(USD) 

Damage 
Score Vulnerability Score 

TICV 
Score TC 

NJ 2 
Med. 
Min. 
Max. 

0 
0 
0 

936,000 
702,000 

1,170,000 

50 
13 
86 

26 
20 
31 

31 
21 
42 

1 
1 
1 

NY 2 
Med. 
Min. 
Max. 

0 
0 
0 

75,000 
75,000 
75,000 

76 
12 
140 

22 
20 
25 

37 
16 
59 

1 
1 
1 

Region 4 
Med. 
Min. 
Max. 

0 
0 
0 

388,500 
75,000 

1,170,000 

50 
14 
140 

23 
20 
31 

31 
16 
59 

1 
1 
1 

FEMA Region VIII: Colorado, Montana, North Dakota, South Dakota, Utah and 

Wyoming 

Covering a large geographical area, FEMA Region VIII (Figure 4.11) spans six 

states, and over 1.29 million square kilometers (about 498,100 square miles) across the 

northern continental interior and the western frontier.  Within this vast region, 1,223 

tornadoes struck during 2000–2009.  However, given the vast land area and sparse 

population, it should not be surprising that a small percentage of usable events resulted 

from Region VIII.  With the lowest percent retained among the ten regions, 3.35, only 41 

tracks from the initial dataset appear in USTOR2000, and Montana entered no events into 

this record (Table 4.6). 

Damage components ranged from zero to $59M (Northwood, ND, 26 August 

2007), and vulnerability scores range from 11, low, to 33, high.  TICV scores ranged 

from zero to 1,225 (Northwood, ND), and categories represented include TC0 through 

TC4.  The lone TC4 event, which occurred in Northwood (8 August 2007), was one of 

only 17 F4 (or EF-4) events recorded in North Dakota from 1 January 1950 through 10 

October 2010 (the latest date available as of this writing).  Furthermore, it was only one 
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of three EF4s to occur during the study period.  The Northwood tornado was, by a factor 

of nearly two, the widest funnel ever in North Dakota, with a maximum width of 1,280 

meters (1,400 yards).  "This town is a mess.  This town is a disaster.  There's virtually 

nothing that hasn't been damaged" according to the community's emergency center 

manager (Tornado 2007, 2A).  The NCDC (2010) narrative states: 

Northwood, in southwest Grand Forks County, had a population of about 1000 
[959] people. 90 [sic] percent of the roughly 460 homes were damaged. One death 
occurred in a mobile home, with 18 other injuries reported. The death occurred in a trailer 
park on the north edge of town, where 19 total units were demolished. Just to the east of 
the trailer park, in the area that sustained the extreme damage, three businesses were hit 
particularly hard. 
 

Figure 4.11: FEMA Region VIII - CO, MT, ND, SD, UT and WY. 

 

Northwood, in 2010, is advancing through the recovery process, building a new 

$13M school to replace the one scrapped by the tornado, a new hotel, a new laundry, and 

RV park (Northwood 2010).  Its rating of TC4 may appear to be too low, but its TICV 
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score remained a little over half of what the Jenks breaks required to place it into the TC5 

range.  Other notable events in Region VIII include Herrick, SD (9 August 2002, TICV 

577, TC3), and Windsor, CO (22 May 2008, TICV 476, TC3).  The Windsor event was a 

segment in the 63 kilometer (39 mile) event referred to in the NCDC record as the 

Platteville Airport tornado.  The community of 9,896 incurred $125M in losses and one 

fatality (Jaeger 2009); however, it displayed low vulnerability according to this analysis, 

with a score of 17 indicating a good resource base from which to initiate recovery. 

 
Table 4.6: FEMA Region VIII median, minimum and maximum component values, 

scores and category (fatality totals noted in parentheses). 

 

State Event Total 
Median 

Minimum 
Maximum 

Fatalities 
Damage 

Component 
(USD) 

Damage 
Score Vulnerability Score 

TICV 
Score TC 

CO 7 
Med. 
Min. 
Max. 

0 
0 

1 (1) 

1,130 
0 

132,000,000 

0 
0 

13,338 

20 
12 
29 

2 
0 

476 

1 
0 
3 

MT 0  -- -- -- -- -- -- 

ND 19 
Med. 
Min. 
Max. 

0 
0 

1 (1) 

0 
0 

59,000,000 

0 
0 

61,522 

25 
20 
33 

0 
0 

1,225 

0 
0 
4 

SD 8 
Med. 
Min. 
Max. 

0 
0 
0 

0 
0 

3,510,000 

0 
0 

11,333 

25 
19 
31 

0 
0 

577 

0 
0 
3 

UT 2 
Med. 
Min. 
Max. 

0 
0 
0 

13,000 
1,000 
25,000 

7 
0 
15 

22 
16 
28 

9 
2 
16 

1 
1 
1 

WY 5 
Med. 
Min. 
Max. 

0 
0 
0 

0 
0 

300,000 

0 
0 
11 

16 
11 
28 

0 
0 
16 

0 
0 
1 

Region 41 
Med. 
Min. 
Max. 

0 
0 

1 (2)  

0 
0 

132,000,000 

0 
0 

61,552 

24 
11 
33 

0 
0 

1,225 

0 
0 
4 

FEMA Region IX: Arizona, California and Nevada 

Well removed from what is traditionally considered tornado alley (Bluestein 

2006), FEMA Region IX (Figure 4.12) recorded 134 events from 2000–2009, with 15 of 

those included here (retention of 11.19 percent).  The damage component ranged from 

zero to $350,000 (March Air Force Base, CA, 22 May 2008) and TICV scores ranged 
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from zero to 159 (also March AFB).  Vulnerability scores ranged from 11, low, to 29, 

moderate-high.  No events from Nevada were used, and within the two other states, 

Arizona's events all scored zeroes for the TICV and TC, and California recorded one TC0 

and nine TC1s, all with very low TICV scores.  Additionally, there were no events 

resulting in a fatality in this region (Table 4.7). 

Figure 4.12: FEMA Region IX - AZ, CA and NV. 

 

Table 4.7: FEMA Region IX median, minimum and maximum component values, 

scores and category. 

State Event Total 
Median 

Minimum 
Maximum 

Fatalities 
Damage 

Component 
(USD) 

Damage 
Score 

Vulnerability Score TICV 
Score 

TC 

AZ 4 
Med. 
Min. 
Max. 

0 
0 
0 

0 
0 
0 

0 
0 
0 

12 
11 
22 

0 
0 
0 

0 
0 
0 

CA 11 
Med. 
Min. 
Max. 

0 
0 
0 

90,520 
0 

800,000 

2 
0 

945 

22 
15 
29 

5 
0 

159 

1 
0 
1 

NV 0  -- -- -- -- -- -- 

Region 15 
Med. 
Min. 
Max. 

0 
0 
0 

10,700 
0 

800,000 

1 
0 

945 

19 
11 
29 

4 
0 

159 

1 
0 
1 

 



 103 

FEMA Region X: Idaho, Oregon and Washington 

Region X (Figure 4.13) saw the third lowest number of tornadoes in the initial 

dataset (behind Regions I and II) at 104, of which, four were retained here for a retention 

percentage of 3.85.  The damage component ranged from zero to $136,400 (Chubbuck, 

ID, 14 February 2000) and vulnerability scores ranged from 20, low-moderate, to 29, 

moderate-high.  TICV scores ranged from zero to 46 (Dayton, WA, 16 January 2000).  

Categories were split evenly, with two events rated as TC0 and two as TC1.  No tornado-

related fatalities occurred in this region (Table 4.8). 

 
Figure 4.13: FEMA Region X - ID, OR and WA. 

 

Table 4.8: FEMA Region X median, maximum and minimum component values, 

scores and category. 

State Event Total 
Median 

Minimum 
Maximum 

Fatalities 
Damage 

Component 
(USD) 

Damage 
Score 

Vulnerability Score TICV 
Score 

TC 

ID 3 
Med. 
Min. 
Max. 

0 
0 
0 

0 
0 

136,400 

0 
0 
14 

23 
20 
27 

0 
0 
1 

0 
0 
1 

OR 0  -- -- -- -- -- -- 

WA 1 
Med. 
Min. 
Max. 

0 
0 
0 

124,000 
124,000 
124,000 

46 
46 
46 

29 
29 
29 

36 
36 
36 

1 
1 
1 

Region 4 
Med. 
Min. 
Max. 

0 
0 
0 

62,000 
0 

136,400 

7 
0 
46 

25 
20 
29 

9 
0 
36 

0.5 
0 
1 
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FEMA Region III: Delaware, Maryland, Pennsylvania, West Virginia and Virginia 

Region III (Figure 4.14, Table 4.13) witnessed a much higher occurrence of 

tornadoes than the previous five regions discussed, with 449 total events occurring during 

the study period.  Of those, 47 were retained in USTOR2000 (10.47 percent), with the 

near-majority, 23 of 47, occurring in Virginia.  The damage component ranged from zero 

to $60,794,000 (Stanleytown, VA, 17 September 2004), for a damage score of 40,128.  

Vulnerability scores ranged from 14, low, to 29, moderate-high.  

TICV categories appearing in this region range from TC0 to TC4, with TC2 

events absent.  The TC4 event in this region took place in Stanleytown, VA (referred to 

in the NCDC record as the Fieldale tornado), on a very active tornado-day (43 events in 

Virginia).  A damage figure of $53,800,800 was reported by the SPC, the tornado 

claimed no lives, and recorded a TICV score of 994; the highest in this region.  No news 

articles could be located in order to elaborate on the impact and/or recovery of the area 

resulting from this event, but the NCDC (2010) narrative describes it as:  

A tornado [that] touched down near Fieldale at 1104 EST. The F1 tornado crossed 
U.S. Highway 220 turning over 2 tractor-trailer trucks and 2 passenger vehicles. All 4 
drivers suffered minor injuries. The tornado damage patch widened to a quarter mile, and 
strengthened to F2 as it approached and struck a factory. At this location, around 40 
vehicles were severely damaged or destroyed. The factory experienced significant 
damage. The tornado then proceeded north and entered a residential subdivision, but only 
minor roof and tree damage occurred here. The tornado path became intermittent as it 
continued north and the damage was limited to trees. The tornado crossed into Franklin 
County at 1114 EST. 
 
The subdivision mentioned in the narrative is Stanleytown (population 1,515); the 

narrative indicates that only minor damage occurred in that area, with most of the damage 

occurring after the touchdown, one mile north of Fieldale (population 929).  In this 

particular instance, the index does not appear to fit reality. 
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Figure 4.14: FEMA Region III - DE, MD, PA, WV and VA. 

 

A second notable event in this region was the Clark, PA, tornado of 10 November 

2002 (TICV 450; TC3).  A small town of 633, Clark was struck shortly after the twister's 

touchdown at 7:54 EST.  The NCDC (2010) narrative states: 

The tornado traveled northeast at 50 mph, crossed Route 18, then ripped into Clark. 
It crossed Shenango River Lake and tracked to New Hamburg, where it dissipated 8:02 
PM. The tornado path was 7 miles long, about 500 yards wide at its maximum, in the 
town of Clark. Maximum winds estimated 155 mph. Majority of damage and all injuries 
occurred in Clark. Fifteen homes completely destroyed, 13 major damage, 29 had minor 
damage. One business destroyed; 1 suffered major damage. A large number of trees were 
snapped or toppled. Large truck was overturned. One van was thrown across Route 258. 
Several other vehicles were moved by the tornado or suffered considerable damage. 
Strongest tornado in Mercer county since May 31,1985. 
 
Most of the damage occurred in the community of Clark, displaying an example 

of the TICV producing a result that can be applied directly to the community of record to 

better put the event into perspective.  The record does not mention that the tornado 

claimed one life, an 81-year old man (Aid 2003).  One fatality, in combination with the 

$1M in damages (adjusted to 2008 dollars, $1.19M) produced a damage component of 

$8.19M.  The vulnerability score for Clark was 16, on the low end of the scale. 

The Vindicator newspaper based in Youngstown, OH, described Clark as a "small 

Mercer County borough,"  and indicated that 12 homes were destroyed with over 100 
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more damaged (Aid 2003, B2).16  The middle category (of non-zero events), a TC3 event 

represents an impact that, while not devastating or near-total (e.g., Greensburg, KS, and 

Hallam, NE), affected the community beyond the scale of minor damage to trees and 

buildings.  

Table 4.9: FEMA Region III median, maximum and minimum component values, 

scores and category (fatality totals noted in parentheses). 

FEMA Region IV: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, 

South Carolina and Tennessee 
 

Region IV (Figure 4.15, Table 4.10) spans eight states in the southeastern U.S., 

and was home to 3,170 tornadoes during the study period.  After removing unusable 

events, 392 tornadoes were considered here, for a retention percentage of 12.37.  Damage 

component values ranged from a minimum of zero to a maximum of $323M (Enterprise, 

AL, 1 March 2007).  Vulnerability scores ranged from 11, low, to 36, high.  All six TICV 

                                                 
16 There sometimes are discrepancies between local reports and NCDC descriptions. 

State Event Total 
Median 

Minimum 
Maximum 

Fatalities Damage 
Component (USD) 

Damage 
Score Vulnerability Score TICV 

Score TC 

DE 0  -- -- -- -- -- -- 

MD 16 
Med. 
Min. 
Max. 

0 
0 
0 

23,550 
0 

6,420,000 

1 
0 

530 

19 
14 
26 

5 
0 
97 

1 
0 
1 

PA 8 
Med. 
Min. 
Max. 

0 
0 

1 (1) 

141,250 
0 

8,190,000 

12 
0 

12,938 

20 
15 
28 

17 
0 

450 

1 
0 
3 

VA 23 
Med. 
Min. 
Max. 

0 
0 
0 

1,130 
0 

60,794,000 

0 
0 

40,125 

22 
17 
29 

0 
0 

994 

1 
0 
4 

WV 0  -- -- -- -- -- -- 

Region 47 
Med. 
Min. 
Max. 

0 
0 

1 (1) 

10,400 
0 

60,794,000 

0 
0 

40,125 

21 
14 
29 

2 
0 

994 

1 
0 
4 
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categories are represented in this region, including one of the four TC5 events in 

USTOR2000, Paisley, FL.  

Touchdown occurred at 2:37 EST, on 2 February 2007, "in a rural area west 

southwest of Paisley," (NCDC 2010b).  The tornado eventually laid down a 26-mile path 

that lifted and touched down three times, claimed a total of 13 lives (all persons in mobile 

homes) and caused close to $100M in damage overall.  The path was segmented into four 

individual community-track intersections, striking the southeast corner of Paisley 

(population 734), Lake Mack-Forest Hills (population 989), West De Land (population 

3,424), and De Land (population 20,904); it is the Paisley segment that warranted the 

TC5 rating, as $46M in damage and all 13 lost lives occurred as a result of the track-

community intersection there.  A visual inspection of the area using satellite imagery via 

Google Earth ® (Figure 4.15) revealed the presence of several mobile homes in Paisley, 

in the area through which the tornado tracked. 

Figure 4.15: Mobile homes located at the southeastern corner of Paisley, FL (source: 

Google Earth 2010). 
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Additionally, Associated Press and local newspaper reports supported the fatality 

assignment (e.g., Ellis 2007; Florida Storm 2007; Long and Merzer 2007) thus the 13 

fatalities were assigned to the attribute table entry attached to the community of Paisley.  

The Lake Mack-Forest Hills and West De Land segments rated TC0, as data could not be 

attached to those tracks, and the final segment, West De Land, rated a TC2, incurring 

$52M in damage, with an damage component of $54.08M and a damage score of 2,587. 

Figure 4.16: FEMA Region IV - AL, FL, GA, KY, MS, NC, SC and TN. 

 

 Along with the Paisley event, there were several other tornadoes that caused a 

great deal of damage and were subsequently scored high on the TICV, including five 

TC4 and 11 TC3 events.  Three of the five TC4 events were born of a single parent 

supercell over western Tennessee, striking the communities of Bradford, Newbern, and 

Rutherford on the same day, 2 April 2006, recording TICV scores of 1,300, 1,140 and 
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843 respectively.  The Bradford event registered a damage component of $68.75M for a 

damage score of 61,769, and claimed six lives.  The NCDC (2010) narrative states:  

This tornado was the second of two F3 tornadoes that affected Gibson County on 
April 2nd. The tornado touched down just south of the Obion and Gibson County line and 
tracked southeast. The tornado lifted just east of Rutherford near the intersection of China 
Grove Rd and Highway 105.  The hardest hit area was the city of Bradford. There were 
six fatalities in Bradford along with forty-four injuries. Approximately two hundred fifty 
homes were damaged and seventy-five homes were destroyed. The Bradford Police 
Department was completely destroyed. Other businesses were also severely damaged. 
 

Table 4.10: FEMA Region IV median, minimum and maximum component values, 

scores and category (fatality totals noted in parentheses). 

State Event Total 
Median 

Minimum 
Maximum 

Fatalities 
Damage 

Component (USD) 
Damage 
Score Vulnerability Score 

TICV 
Score TC 

AL 79 
Med. 
Min. 
Max. 

0 
0 

11 (29) 

103,550 
0 

323,000,000 

19 
0 

28,223 

25 
14 
36 

22 
0 

802 

1 
0 
4 

FL 106 
Med. 
Min. 
Max. 

0 
0 

13 (22) 

13,000 
0 

138,840,000 

0 
0 

189,155 

24 
11 
35 

3 
0 

2,223 

1 
0 
5 

GA 42 
Med. 
Min. 
Max. 

0 
0 

6 (11) 

263,750 
0 

129,440,000 

60 
0 

8,647 

28 
14 
36 

40 
0 

543 

1 
0 
3 

KY 19 
Med. 
Min. 
Max. 

0 
0 
0 

169,500 
0 

79,360,000 

105 
0 

20,491 

28 
19 
35 

56 
0 

857 

1 
0 
4 

MS 38 
Med. 
Min. 
Max. 

0 
0 

2 (2) 

874,500 
0 

71,400,000 

123 
0 

6,895 

30 
14 
34 

57 
0 

464 

1 
0 
3 

NC 15 
Med. 
Min. 
Max. 

0 
0 
0 

0 
0 

2,340,000 

0 
0 

243 

24 
14 
32 

0 
0 
74 

0 
0 
1 

SC 42 
Med. 
Min. 
Max. 

0 
0 

1 (1) 

0 
0 

7,280,000 

0 
0 

493 

26 
13 
35 

0 
0 

132 

0 
0 
1 

TN 51 
Med. 
Min. 
Max. 

0 
0 

16 (59) 

585,000 
0 

133,400,000 

64 
0 

61,769 

26 
15 
32 

43 
0 

1,300 

1 
0 
4 

Region 
392 

 

Med. 
Min. 
Max. 

0 
0 

16 (124) 

181,000 
0 

323,000,000 

11 
0 

189,155 

26 
11 
36 

17 
0 

2,223 

1 
0 
5 

 

"The [Bradford] F3 tornado resulted in sixteen fatalities and 70 injuries. Seventy-

one homes were destroyed and one hundred eighty-two were damaged" (NCDC 2010b), 

resulting in a damage component of $133.4M for a damage score of 44,645.  Rutherford 
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took $15M in losses, with two lives lost, for a damage component of $30.05M and a 

damage score of 23,624.  These three communities all exhibit moderate-high levels of 

vulnerability, with Bradford's score at 27, Newbern's at 29 and Rutherford's at 30.  

Elevated levels of vulnerability in conjunction with heavy monetary losses and the 

accompanying loss of life resulted in these events being rated in the second highest TICV 

category, indicating tornadoes that did not completely devastate the communities, but yet 

caused widespread damage and imposed a severe impact on them (e.g., Clark 2006; Hall 

2006; Schrade and Alligood 2006).  Other notable TC3 events include Portland and Lake 

Tansi, TN, Camilia, GA, Lady Lake, FL, and Enterprise and Carbon Hill, AL.  Notable 

TC2 events include Jackson and Gallatin, TN.  

FEMA Region V: Illinois, Indiana, Michigan, Minnesota, Ohio and Wisconsin 

Region V (Figure 4.17), covering the upper Midwest, witnessed 1,776 tornadoes 

over the study period, of which 170 were retained for a percentage of 9.57.  Damage 

components ranged from zero to $156,350,000 (Evansville, IN, 6 November 2005).  

Vulnerability scores ranged from 11, low, to 33, high.  TICV scores ranged from zero to 

1,110 (North Utica, IL, 20 April 2004).  TC0 through TC4 events appear in this region, 

with only TC5 events absent (Table 4.11). 

The North Utica, IL, tornado (highest TICV score in this region at 1,110, and 

categorized as TC4) caused a relatively little damage in dollars, $4M, compared to 

several other more destructive events in the dataset, but owes its high score to the size of 

the community, and the fact that eight lives were lost as a result of this storm.  North 

Utica scored low-moderate (19) on the vulnerability scale, indicating a profile of a 

community with an increased capacity to recover from the event.  This was a long-track 
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event that was segmented into three tracks, with the first community-track intersection 

striking Mark, IL (population 491), with no data available for that specific segment it 

received a score and category of zero.  Granville was struck by the second segment, 

resulting in a score of 259, category TC2, and North Utica was the third. 

Figure 4.17: FEMA Region V - IL, IN, MI, MN, OH and WI. 

 

Another TC4 in this region that resulted in the loss of life was the Siren, WI (18 

June 2001, population 988) tornado, taking two lives, causing $10M in damage for a 

damage component of $26.2M, and a TICV score of 887.  The town's tornado sirens 

failed to provide warning, but other mediums of information were still available, such as 
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radio and television (Malhan 2001), and the town sheriff, who quickly drove around the 

small town warning people in person.  According to the NCDC (2010) narrative: 

The tornado touched down at 806 pm local daylight time 1.5 miles east of 
Grantsburg and traveled east at an average speed of 40 mph through the village of Siren 
to the Washburn County line, then continued on to a point 3 miles west of Spooner. The 
path of the tornado averaged 1/8 to 1/4 mile, but reached its greatest width of mile as it 
approached Siren around 820 pm, where it did F-3 damage. Two people were killed by 
the tornado, and there were 16 injuries. Four hundred homes were destroyed, 200 in Siren 
alone, with 280 homes damaged, and 60 businesses destroyed or damaged. Most of the 
damage occurred in an 8-block area of Siren. 

 
Table 4.11: FEMA Region V median, minimum and maximum component values, 

scores and category (fatality totals noted in parentheses). 

State Event Total 
Median 

Minimum 
Maximum 

Fatalities 
Damage 

Component (USD) 
Damage 
Score Vulnerability Score 

TICV 
Score TC 

IL  58 
Med. 
Min. 
Max. 

0 
0 

8 (10) 

0 
0 

60,520,000 

0 
0 

61,944 

22 
11 
33 

0 
0 

1,110 

4 
0 
4 

IN 38 
Med. 
Min. 
Max. 

0 
0 

20 (26) 

1,215,000 
0 

156,350,000 

65 
0 

32,011 

23 
13 
31 

40 
0 

786 

1 
0 
4 

MI 5 
Med. 
Min. 
Max. 

0 
0 
0 

0 
0 

8,330,000 

0 
0 

1,021 

24 
22 
27 

0 
0 

153 

0 
0 
1 

MN 30 
Med. 
Min. 
Max. 

0 
0 

1 (3) 

300,000 
0 

39,100,000 

29 
0 

33,888 

19 
12 
29 

20 
0 

870 

1 
0 
4 

OH 15 
Med. 
Min. 
Max. 

0 
0 

1 (2) 

481,500 
0 

25,600,000 

207 
0 

5,333 

24 
14 
29 

69 
0 

329 

1 
0 
2 

WI 24 
Med. 
Min. 
Max. 

0 
0 

2 (4) 

758,475 
0 

29,750,000 

54 
0 

26,518 

20 
14 
29 

35 
0 

887 

1 
0 
4 

Region 170 
Med. 
Min. 
Max. 

0 
0 

20 (45) 

148,100 
0 

156,350,000 

16 
0 

61,944 

22 
11 
33 

17 
0 

1,110 

1 
0 
4 

 
Other communities receiving high TICV scores and TC4 designations in this 

region include Glenville, MN (1 May 2001, population 720, TICV score 870), Buffalo 

Lake, MN (24 June 2003, population 768, TICV score 772), Zoar, WI (7 June 2007, 

population 124, TICV score 776), and Newburgh, IN (6 November 2005, population 

3,088, TICV score 786).  The Ladysmith, WI (2 September 2002), TC3 event is 

compared to three other events later in this chapter.  A notable TC2 event in this region 
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was the Evansville, IN (6 November 2005).  A damage figure of $15M to a community of 

121,582 is comparatively small, but the tornado claimed 20 lives, all in a mobile home 

park south of Interstate 164.  

Within this region lies the longest track in the dataset, and the fourth longest when 

all 2000–2009 events are considered; the 112-mile Indianapolis tornado.  This monster 

struck eight different communities causing a total of $103M in damages, but amazingly 

did not claim a single life.  As per the segmenting procedure described in Chapter Three, 

this event was broken into eight discrete segments, one scoring as TC0, four as TC1, and 

three as TC2. 

FEMA Region VI: Arkansas, Louisiana, New Mexico, Oklahoma and Texas 

Region VI (Figure 4.18), covering the central southern U.S. recorded 2,846 

tornadoes from 2000–2009, of which 183 were included here for a retention percentage 

of 6.43.  Damage components ranged from zero to $648M (Arlington, TX, 28 March 

2000), and damage scores range from zero to 42,554 (New Cordell17, OK, 9 October 

2001).  Vulnerability scores ranged from 11, low, to 39, high.  TICV scores ranged from 

zero to 1,117 (New Cordell, OK, 9 October 2001), resulting in categories TC0 through 

TC4 represented, with no TC5 events in this region (Table 4.12). 

There were a total of two TC4s, eight TC3s, and eight TC2s in this region.  As 

mentioned above, the highest TICV score resulted from the New Cordell, OK (population 

2,867), event, a TC4.  Despite several injuries, and one man remaining trapped in his car 

while it was tossed 250 feet,  no fatalities occurred there (Plains Twisters 2001).  The 

                                                 
17 The census lists this community as "New Cordell," but it is referred to as "Cordell" in 
all other sources located. 
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damage component, after adjusting for inflation, was $122M.  According to the NCDC 

(2010) narrative: 

This tornado developed on the southwest side of Cordell, where a mobile home and 
metal warehouse were blown into a farmhouse. The tornado then moved through south, 
east and northeast portions of Cordell, including a business district and a large residential 
area. Most damage south of Main Street was rated F0 or F1. North of Main Street, the 
damage path widened to approximately 500 yards, with the tornado then inflicting 
widespread F1 to F2 damage up to 12th Street. Hundreds of homes were damaged in this 
area. As the tornado began to exit the northeast side of Cordell, F3 damage was sustained 
to several homes on 9th Street, just west of Crider Road. An F4 rating was considered; 
however, the structural integrity of most structures was at or below average, and was 
taken into consideration. Another interesting note is that several eye-witnesses reported 
that the tornado was widest and contained the most violent-looking winds at this time. 
The tornado eventually exited Cordell and dissipated 3.5 miles northeast of town. 
 

Figure 4.18: FEMA Region VI - AR, LA, NM, OK and TX. 

 

The only other event in this region to be rated as a TC4 occurred in Wilmont, AR 

(population 786), on 24 November 2001.  This tornado caused $2M in damage, but 

received a damage component of $23.44M due to the three fatalities that resulted from 
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the storm.  "Heavy damage [was] reported," (Brown 2001, A1), and the NCDC (2010) 

narrative states:  

The tornado strengthened and widened as it approached the Wilmot area and was 
rated as an F3 with a maximum width of one half mile. The tornado destroyed 14 mobile 
homes and houses and caused extensive damage to five other homes in the vicinity of 
Wilmot. A church on the north side of Wilmot was completely destroyed. 
 

Table 4.12: Region VI median, minimum and maximum component values, scores 

and category (fatality totals noted in parentheses). 

State Event Total 
Median 

Minimum 
Maximum 

Fatalities Damage 
Component (USD) 

Damage 
Score Vulnerability Score TICV 

Score TC 

AR 27 
Med. 
Min. 
Max. 

0 
0 

 3 (6) 

75,000 
0 

75,000,000 

5 
0 

29,821 

28 
18 
38 

10 
0 

1,031 

1 
0 
4 

LA 29 
Med. 
Min. 
Max. 

0 
0 

1 (2) 

300,000 
0 

12,650,000 

32 
0 

8,927 

29 
18 
35 

27 
0 

525 

1 
0 
3 

NM 2 
Med. 
Min. 
Max. 

0 
0 
0 

1,820,000 
0 

3,640,000 

1,663 
0 

3,327 

25 
21 
29 

156 
0 

312 

1 
0 
2 

OK 39 
Med. 
Min. 
Max. 

0 
0 

8 (8) 

113,000 
0 

245,700,000 

3 
0 

42,553 

25 
17 
36 

8 
0 

1,116 

1 
0 
4 

TX 86 
Med. 
Min. 
Max. 

0 
0 

4 (5) 

83,625 
0 

648,000,000 

1 
0 

6,815 

26 
11 
35 

6 
0 

414 

1 
0 
3 

Region 183 
Med. 
Min. 
Max. 

0 
0 

8 (21) 

100,000 
0 

648,000,000 

5 
0 

42,553 

26 
11 
38 

11 
0 

1,116 

1 
0 
4 

 
Of the remaining TC3 through TC0 events, only six additional tornadoes resulted 

in fatalities; Lone Grove, OK (2/10/2009, eight fatalities), Olla, LA (23 November 2004, 

one fatality), Mena, AR (9 April 2009, three fatalities), Arlington, TX (28 March 2000, 

four fatalities), Corpus Christi, TX (24 October 2002, one fatality), and New Orleans, LA 

(13 December 2007, one fatality).  The F4 tornado that struck Moore, OK (population 

41,138), on 8 May 2003 was rated as a TC2.  With a reported $210M in damage (damage 

component $245.7M), but no fatalities, the event received a TICV score of 368.  Moore 

exhibits moderate vulnerability (23), thus possessing an ability to recover from a rather 

large event in terms of damage indicators.  Furthermore, the event was spread out over 
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several adjacent and discrete communities, with the high damage figure not attached 

solely to the community of Moore. 

FEMA Region VII: Iowa, Kansas, Missouri and Nebraska 

Region VII (Figure 4.18) logged 2,807 tornadoes during the study period, but 

only 118 of those were deemed usable for this research, for a retention percentage of 

4.20.  The damage component range from zero to $327M (Greensburg, KS, 4 May 2007), 

and damage scores ranged from zero to 436,783 (Hallam, NE, 22 May 2004).  

Vulnerability scores ranged from 14, low, to 34, high (Table 4.13).  TICV scores ranged 

from zero to 2,743 (Hallam, NE), and all six categories are represented, including three of 

the four TC5 events in the dataset: Hallam, NE, Greensburg, KS, and Ellsinore, MO. 

The 2004 Hallam (population 276) tornado ranks second in this dataset in path 

length at 87 kilometers (54 miles), behind only the Indianapolis track.  It also recorded a 

maximum path width of 4,023 meters (4,400 yards), or approximately four kilometers 

(two and a half-miles); the widest ever recorded by the NWS (NWS 2004).  The full track 

caused $160M in damage along its route, with the majority of the funnel‟s time spent 

ripping through unpopulated areas.  Had this enormous tornado tracked approximately 25 

kilometers (15.5 miles) north it would have torn through Lincoln, NE, and at over four 

kilometers wide undoubtedly would have caused catastrophic devastation.18 

 

 
                                                 

18 Research on the hypothetical temporal and spatial transplant of tracks from one 
community to another was done by Rae and Stefkovich, (2000), "moving" the May 1999 
Moore, OK, tornado onto the Dallas-Fort Worth, TX, metro area.  According to the 
authors, the damage to the Dallas-Fort Worth area would be massive should a tornado the 
size of the Moore event occur in the Dallas-Fort Worth area. 
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Figure 4.19: FEMA Region VII - IA, KS, MO and NE. 

 

The track intersected the southern tip of Wilber, but no clear damage figure could 

be found.  Along its path, the tornado took one life.  A damage figure of $100M was 

attached to the community, as estimated by subtracting the $60M in damages attributed 

by the NCDC to "agricultural" structures (2010), which were assumed to be in rural 

areas, from the $160M total.  Newspaper reports culled from an Internet search 

consistently refer to the town as “flattened,” “almost totally destroyed,” “demolished,” 

“leveled,” and, according to FEMA official Mike Brown, "...about as bad as it gets" 

(WOWT 2004).  The NCDC narrative indicates that approximately, "95 percent of the 

buildings in town were either destroyed or severely damaged" (2010).  As a result, 

Hallam scored the highest TICV rating in the dataset: 2,743.  Over six years later, the 
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community is still in the process of recovering, with a new post office completed in 2009 

(Laukaitis 2009) and other structures, such as a damaged cooling tower, replaced in late 

2010 (NTV 2010). 

Table 4.13: FEMA Region VII median, minimum and maximum component values, 

scores and category (fatality totals noted in parentheses). 

State Event Total 
Median 

Minimum 
Maximum 

Fatalities Damage 
Component (USD) 

Damage 
Score Vulnerability Score TICV 

Score TC 

IA  39 
Med. 
Min. 
Max. 

0 
0 

7 (10) 

10,700 
0 

66,000,000 

1 
0 

34,939 

23 
14 
29 

5 
0 

930 

1 
0 
4 

KS 20 
Med. 
Min. 
Max. 

0 
0 

11 (13) 

230,375 
0 

327,000,000 

38 
0 

207,750 

26 
21 
32 

29 
0 

2,439 

1 
0 
5 

MO 43 
Med. 
Min. 
Max. 

0 
0 

2 (4) 

428,000 
0 

70,200,000 

82 
0 

147,520 

25 
18 
34 

44 
0 

2,213 

1 
0 
5 

NE 16 
Med. 
Min. 
Max. 

0 
0 

1 (1) 

2,500 
0 

120,000,000 

0 
0 

434,782 

24 
17 
29 

0 
0 

2,743 

0.5 
0 
5 

Region 118 
Med. 
Min. 
Max. 

0 
0 

11 (28) 

100,000 
0 

327,000,000 

16 
0 

434,782 

24 
14 
34 

20 
0 

2,743 

1 
0 
5 

 

The second of three TC5 events in this region hit Ellsinore, MO.  The small 

community (population 363) was struck by the same tornado that shortly before passed 

through Van Buren, MO, (population 845, TICV score 217, TC2).  The Ellsinore segment 

was rated with a TICV score of 2,213, and the community itself, pre-event, exhibited 

high vulnerability, with a score of 33.  According to the NCDC, "Damage on the south 

side of Ellsinore was severe, where about 7 businesses were destroyed" (2010).  News 

reports are not clear on how many homes were destroyed, but report that over 60 homes 

total were damaged in both Van Buren and Ellsinore (Tally 2002).  The $45M damage 

total was collected from the Butler County Emergency Management Office.  FEMA 

records are also unclear as to the extent of damage in the town, but indicate over $11.5M 

was made available to Butler and 39 additional counties after this and seven other 
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tornadoes occurred that same day.  Given the lack of news reports discussing the extent 

of damage and related recovery activities, which are commonly found in the media for 

very large events, it is questionable whether or not the Ellsinore tornado warrants a TC5 

rating.  The third TC5 event in this region, Greensburg, KS, is discussed in more detail 

and in comparison to three other events in the Discussion section. 

Of the remaining events in this region, four were rated as TC4 and four as TC3.  

All four of the TC4 events resulted in at least one fatality each, with seven occurring in 

Parkersburg, IA (25 May 2008, TICV 930), one in Hoisington, KS (21 April 2001, TICV 

790), one in Chapman, KS (11 June 2008, TICV 756), and two in New Hartford, IA (25 

May 2008).  Additionally, the Dunkerton, IA (11 May 2000, TICV 436, TC3) event 

resulted in one fatality. 

Summary of Analysis by FEMA Region  

FEMA Regions were chosen to facilitate discussion of these results as they 

represent boundaries that are recognized by emergency management officials.  

Additionally, in a vernacular sense, they represent regions of the coterminous U.S. that 

are recognizable by the layperson (e.g., the Deep South, Midwest, Great Plains).  Table 

4.13 summarizes the TICV components and scores by FEMA Region.  Expressed as the 

geometric interval of  median TICV value by state,  Figure 4.20 shows most regions do 

not appear to be homogeneous in terms of the TICV and TC values.  Regions, such as the 

Plains states, show similar median values (tornado alley is clearly visible), but Dixie alley 

in the southwest (FEMA Region IV) shows a wide range of median values, spanning all 

four classes presented by the interval method employed.  Similar statements can be made  

for FEMA Regions I, II and III.  While these regions serve a useful purpose in terms of 
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allowing the Department of Homeland Security to efficiently govern the Federal 

Emergency Management Agency, they do not appear to accurately demarcate regions 

across the coterminous U.S. as a whole in terms of tornado impact as indicated by the 

index developed here.    

Figure 4.20: Mean TICV values by state. 

 

 

Table 4.14: Summary of TICV components and scores by FEMA Region (fatality 

totals noted in parentheses). 

FEMA 
Region 

Event 
Total 

Median 
Maximum Fatalities 

Damage 
Component 

(USD) 

Damage 
Score 

Vulnerability 
Score 

TICV 
Score Category 

Region I 7 
Med. 
Max. 

1 
1 (1) 

0 
1,695,000 

0 
57 

19 
26 

0 
28 

0 
0 

Region II 4 
Med. 
Max. 

0 
0 

388,500 
1,170,000 

50 
140 

23 
31 

31 
59 

1 
1 

Region III 47 
Med. 
Max. 

0 
1 (1) 

10,400 
60,794,000 

0 
40,125 

21 
29 

2 
994 

1 
4 

Region IV 392 
Med. 
Max. 

0 
16 (124) 

181,000 
323,000,000 

11 
189,155 

26 
36 

17 
2,223 

1 
5 

Region V 170 
Med. 
Max. 

0 
20 (45) 

148,100 
156,350,000 

16 
61,944 

22 
33 

17 
1,110 

1 
4 
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Table 4.14 Continued 

FEMA 
Region 

Event 
Total 

Median 
Maximum Fatalities 

Damage 
Component 

(USD) 

Damage 
Score 

Vulnerability 
Score 

TICV 
Score Category 

Region VI 183 
Med. 
Max. 

0 
8 (21) 

100,000 
648,000,000 

5 
42,553 

26 
38 

11 
1,116 

1 
4 

Region VII 118 
Med. 
Max. 

0 
11 (28) 

100,000 
327,000,000 

16 
434,782 

24 
34 

20 
2,743 

1 
5 

Region VIII 41 
Med. 
Max. 

0 
1 (2) 

0 
132,000,000 

0 
61,552 

24 
33 

0 
1,225 

0 
4 

Region IX 15 
Med. 
Max. 

0 
0 

10,700 
800,000 

1 
945 

19 
29 

4 
159 

1 
1 

Region X 4 
Med. 
Max. 

0 
0 

62,000 
136,400 

7 
46 

25 
29 

9 
36 

0.5 
1 

 

Discussion 

Comparing and Contrasting the TICV across Four Events: Greensburg, KS, 

2007; Enterprise, AL, 2007; Ladysmith, WI, 2002; and Manhattan, KS, 2008 

Three events were chosen for further examination due to the author‟s familiarity 

with those events (Greensburg, Ladysmith and Manhattan), and a fourth was added to 

include an event that occurred in a FEMA Region that displayed higher vulnerability 

scores than the regions housing the previous three.  Further, all four events rate as strong 

(EF2-3) or violent (EF4-5) on the EFS, providing a backdrop to compare the difference 

between applying an EFS rating to describe community impact as opposed to the TICV. 

The Greensburg, KS, Event 

The period of 4–6 May 2004 saw a very strong and slowly advancing low 

pressure system over the central U.S.  Eventually, this system produced a tornado 

outbreak lasting 56 hours and spawning 123 tornadoes over eight central states (NCDC 

2010b).  Over $260M in damage occurred, with 14 deaths.  Unfortunately, the finger of 

blame for the majority of the damage and fatalities points to one single tornado: the 

Greensburg, KS, event. 
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Figure 4.21: Estimated width of the Greensburg, KS, tornado. 

 

Beginning in Comanche county at 9:03 CST 4 May 2007, the tornado moved into 

neighboring Kiowa county, the location of Greensburg, and struck the town from the 

south at approximately 9:45 CST.  According to the NCDC, the width of the funnel was 

2,740 meters (3,000 yards), or 2.74 kilometers (1.7 miles) wide.  A distance measurement 

in ArcMap revealed that Greensburg is approximately 2.1 kilometers (1.3 miles) across at 

its widest point and 1.1 kilometers (0.7 miles) across at its narrowest.  Figure 4.21 

displays a 2,740 meter buffer around the line representing the estimated SPC-derived 

path to illustrate the degree to which this tornado, for all intents and purposes, consumed 

the entirety of the community.  Figure 4.22 displays before and after images of the 

community. 

Total damage resulting from the event stands at $250M with 11 fatalities for a 

damage component of $327M.  Greensburg placed in the moderate-high category for 

vulnerability, and received the second highest TICV score in the dataset (behind only 
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Hallam, NE) at 2,440, landing the event in the TC5 category.  Much attention has since 

been paid to the event, but the NCDC (2010) summarized the immediate aftermath:   

This tornado destroyed nearly 95 percent of the town of Greensburg and despite 
adequate warning, unfortunately took the life [sic] of 11 people, some that were in 
basements. First responders arriving on the scene requested three refrigerated refer trucks 
thinking there would be hundreds of fatalities.  In all, 961 homes and businesses were 
destroyed, 216 received major damage and 307 received minor damage.  [H]azardous 
material was strewn everywhere. As of July 26th [2007], the debris was still not fully 
cleaned up. Two landfills were filled with debris from the town and this was even as most 
was burned. Hundreds of thousands of dump truck loads were taken out. It was estimated 
that approximately 400,000 cubic yards of debris was removed. The major highway 
running through town was closed for 1 full month. At one time there were over 150 law 
enforcement officers (from all over the country) present. Military was called in for debris 
removal and rebuilding. 

 
Figure 4.22: Greensburg before the tornado (top), and after (bottom) (source: 

Google Earth ®). 
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The Enterprise, AL, Event 

At approximately 1:05 CST on 1 March 2007, a tornado entered Enterprise from 

the southwest, and moved directly through the community.  The hardest hit area of the 

town was the high school, suffering major damage to the stadium, and partial collapse of 

the school‟s walls, which killed eight students seeking shelter inside.  A FEMA official 

stated that, “the majority of the school is destroyed” (ABC News 2007).  One additional 

death brought the toll to nine.   

Figure 4.23: Enterprise, AL, tornado estimated path. Yellow circles indicate damage 

sites, while red circles indicate significant damage (source: NWS, Tallahassee, FL). 

 

Overall, 239 homes were destroyed and over 900 homes suffered major or minor 

damage (NCDC 2010b).  The Mayor of Enterprise, Kenneth Boswell, was quoted as 

saying, “It looks like ground zero, where there‟s just nothing left” (FOX News 2007).  

Figure 4.23 shows the NOAA/NWS estimated path of the tornado.  The damage figure 
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reported by the NCDC is $250M (although other sources place the number above 

$300M) for a damage component of $323M and a damage score of 15,252.  Enterprise‟s 

community vulnerability score came in at 23 (moderate), and the TICV score at 596, 

rating this event as a TC3.  As summarized by the NCDC (2010): 

The tornado then traveled northeast and quickly intensified as it moved into the 
Enterprise city limits. It severely damaged the high school just north of the downtown. 
Eight students were killed as walls collapsed on them while they took shelter in the 
interior hallways. Fifty more were injured. The football stadium was destroyed. Many 
vehicles surrounding the schools were overturned or tossed about. Several state roads 
were impassible due to debris and fallen utility poles and lines. The ninth fatality 
occurred where an elderly woman was standing behind a living room window of her 
home as the glass shattered. A nearby elementary school was heavily damaged with no 
deaths or injuries reported there. Damage near the high school and in northeast Enterprise 
reached low end EF-4. 

The Ladysmith, WI, Event 

Founded along the Flambeau River in the Wisconsin Northwoods as a railroad 

community in 1885, Ladysmith has since grown to a population of 3,932 as of the 2000 

census.  Up until 2002, a tornado had never passed through the town.  But at 4:20 CST on 

2 September 2002, a supercell produced a funnel that made contact with the ground just a 

few kilometers west of the entrance to the city (Figure 4.22).   

Already on the ground before the warning sirens could be activated (Wisconsin 

2002), and initially rated as F0, the tornado picked up strength as it moved east.  It 

followed a path directly down Lake Street/Highway 8 (the main road through the city), 

growing from F1 up to F3 strength in the center of town, but began to weaken to F2 

strength as it moved across the river, eventually exiting Ladysmith on the east end.  The 

twister continued for another 15 kilometers (nine miles) before dissipating at F0 strength 

a few kilometers south of the town of Ingram; no other communities were struck by this 

event. 
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Figure 4.24: Estimated path of the Ladysmith, WI, 2002 tornado (source: Stimers 

2003). 

 

In the heart of downtown Ladysmith and west into the residential section, an area 

approximately four blocks wide by 16 blocks long, major damage occurred.  Within this 

small area 40 buildings were completely destroyed with another 159 damaged (NCDC 

2010b).  Luckily, no one was killed, and the total damage is recorded as $25M for a 

damage component of $29.75M, a TICV score of 471, TC3.  Ladysmith scored 29 

(moderate-high) on the community vulnerability scale.  The NCDC (2010) provided this 

narrative of the event: 

The first tornadic supercell to rake Wisconsin this day started just west of 
Ladysmith and tore through the downtown before moving into rural parts of eastern Rusk 
County. Injury totals fluctuated at first, but Rusk County Emergency Management stated 
there were approximately 27 injuries, none more serious than a broken leg. The NWS 
performed a damage survey the next day, and the most severe damage, rated F3, was in 
downtown Ladysmith. In this area 4 blocks wide and 16 blocks long, 40 buildings were 
destroyed and 159 damaged. 
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Figure 4.25: Estimated path of the Manhattan, KS, tornado (source: Google Earth). 

 

The Manhattan, KS, Event 

Beginning approximately 21 kilometers (13 miles) southwest of the Manhattan 

city limits, the tornado moved into the community at roughly 10:56 CST on 11 June 2008 

(Figure 4.25).  A residential area suffered major damage as the tornado passed at EF-4 

strength.  Along its continued path, several businesses were severely damaged, with EF-

3-level damage inflicted on the Kansas State University campus, including the 

Department of Engineering‟s multi-million dollar wind erosion laboratory, and a roof 

completely removed from a fraternity dormitory.  The tornado continued through campus 

flipping vehicles, blowing out windows, and damaging trees.  The funnel dissipated 

within the city limits at approximately 11:03 CST.  No deaths resulted from the event, but 

damage in the amount of $66M was recorded, resulting in a damage score of 1,472.  

Manhattan scored low-moderate vulnerability, with a score of 22.  The TICV score stands 

at 181, for a rating of TC1. 
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Four Communities, Four Unique Events 

Just as each one of us represents a unique individual, with characteristics different 

from everyone else in the world, so too will no one community‟s experience with a 

tornado event be the same.  Sherrib et al. (2010, 228) state that, “Clearly, not all 

communities react in the same way when faced with adversity. Just as individuals have 

the propensity to respond to stress in a variety of ways, so do communities.”  Barnett et 

al. (2008, 104) make the claim that, “Almost all vulnerability studies share an explicit 

concern for losses that directly relate to human welfare, in terms of damage to property, 

damage to livelihoods, forced migration, morbidity or mortality, for example.”  Nelson 

and Finan (2009, 108) argue that, “disasters are the result of larger social structures and 

processes,” a position that is echoed in this research.  Not only does the social fabric play 

a role in determining impact from a disaster, but the sheer physical size of the community 

(Cross 2001) in which that social fabric exists also plays an important role. 

Manhattan, KS, is more than twice the size, in terms of population (44,831), when 

compared to the other three communities examined in this section, and ranked the lowest 

in terms of TICV and TC score of the four events discussed in this section.  Described as 

“light impact,” The TC1 rating for the Manhattan event is not informing the reader about 

the $66M in damage; it is making the statement that given this community‟s size and its 

low-moderate vulnerability score (22), the resources should be present to facilitate a 

recovery, as the Moran‟s I analysis (Figure 4.3) showed was the case for most of the 

communities in FEMA region VII. 
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Figure 4.26: EF-4 damage in the Amherst residential area, Manhattan, KS (photo 

by author, taken with homeowner’s permission, on 12 June 2008; the morning after 

the tornado). 

 

Damage from the event in this case was localized along a path that did not touch 

every business and home in the community.  Friends and neighbors whose belongings, 

shelter, and mental state remained unscathed had the ability to come to the aid of others.  

Homes were opened to provide temporary shelter.  As the immediate aftermath is tended 

to, the fact that the community possesses a lower degree of vulnerability than many 

others means rebuilding can commence, in most cases, almost immediately. 

Reflecting on a visit to the Amherst residential neighborhood (Figure 4.26) in the 

spring of 2009, one year after the event, I noted that while some construction continued, 

the majority of homes had been repaired or rebuilt.  Businesses damaged along the path 

were mostly repaired, and the Kansas State University campus showed practically no 

signs of the event, save a few trees with less-than-full crowns.  The community is large, 
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resilient, and can absorb and recover from the event quickly; therefore, the impact as a 

whole was light. 

Consider the Manhattan event at TC1 in comparison to the Enterprise, AL, event 

at TC3.  Although half the population at 21,178, Enterprise still possesses much in the 

way of resources from which to access in the case of a severe event.  With a vulnerability 

score of 23, just above Manhattan‟s 22, it is considered here to fall into the next highest 

category: moderate social vulnerability.  As stated above, the damage done to the 

community was widespread (Figure 4.27 and Figure 4.28), and with nine lives lost, a 

community of this size is sure to feel the impact both physically and emotionally. 

A new high school opened in August of 2010, complete with two reinforced 

rooms capable of withstanding 200 mile per hour winds (EF-4 limit) (WCTV 2010).  

With a smaller population generally comes a smaller physical size (as is assumed in this 

research, with population standing as a proxy for size), and with that comes a greater 

probability that key resources could be taken out of the recovery loop immediately.  

Fewer buildings in which to house the newly rendered homeless and the possibility of 

key elements of infrastructure such as fire and rescue units and hospitals being damaged 

heightens the level of impact.  The EFS rated both the Manhattan and Enterprise 

tornadoes as EF-4s, but given the description of each, clearly they cannot be seen as 

similar in terms of the impact on each individual community, as the TICV categories 

demonstrate. 
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Figure 4.27: Wreckage of the Enterprise High School, where eight children perished 

(source: New York Times). 

 

Figure 4.28: Ikonos satellite image of the Enterprise High School, stadium and 

surrounding homes before the tornado (left) and after (right) (source: NASA Earth 

Observatory). 

 

Ladysmith, WI, at 3,932, has less than one-fifth the population of Enterprise and 

less than a tenth the population of Manhattan.  The tornado that ripped down the main 

street through town toppled 40 buildings and caused minor to severe damage to scores 

more as it exited the town moments later.  Emergency crews from surrounding, and 

similar-sized towns, as well as larger surrounding metropolitan areas converged on the 
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community almost immediately.  And as is often seen in immediate post-disaster settings, 

altruism played a key role in first response, with many people in the community coming 

to help their neighbors (Caplan 1990).  While thankfully no deaths occurred in 

Ladysmith, $25M in damage virtually shut down the community for weeks.  The political 

aftermath also caused the Mayor to resign his office over the perceived poor handling of 

$400,000 in state relief funds, stating in an ill-received remark, “By the time we get done 

doling out the money, everyone will be mad at everyone else” (Ladysmith 2002, 5B).  

Impact, is seems, has the ability to reach beyond buildings left distorted by rotating 

winds. 

I conducted research in the community regarding the state of recovery in both 

2003 and 2004.  By the latter of the two examinations, it was found that 26 percent of the 

damaged structures were still not repaired, with most of those located in the heavy-hit 

downtown area of central Lake Street and Miner Avenue (Figure 4.29 and Figure 4.30).  

By 2007 nearly all buildings damaged were repaired or replaced, and the town seemed to 

have made a near-full recovery; a half-decade later.  However, as of December 2010, 

several lots remain empty in both the downtown area as well as in the neighborhood on 

the west end of the city.  The TC3 rating applied to this event, in comparison to the 

previous two indicates a community that was initially hit hard by the storm, and recovery 

took some time, not unlike Enterprise, but in terms of size and resources available, worse 

off than Manhattan. 
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Figure 4.29: Progress in rebuilding after the September, 2002, Ladysmith, WI, 

tornado (source: Stimers 2004). 

 

Figure 4.30: Heavily impacted neighborhood on the west end of Ladysmith, WI 

after the September 2002 tornado (source: NOAA). 

 

Since the May 2007 tornado, the community of Greensburg has become 

something of a national celebrity.  A television show produced by the Discovery ® 
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Network, Greensburg: A Story of Community Rebuilding, focuses not only on the 

rebuilding process, but on the drive to become the first Leadership in Energy & 

Environmental Design (LEED) Platinum certified community; a true “green” community 

(see Harrington 2010).  But the massive twister that struck the small town has made 

rebuilding difficult.  As of 2010, the landscape is still nearly devoid of trees, about half of 

the homes damaged remain unrepaired (Pless et al. 2010), and residents continue to 

struggle to put the town back together.  However, many new and modern buildings are 

apparent in the town, such as the hospital, the Silo Eco-home, the “Business Incubator,” 

and the new high school. 

Figure 4.31: Four images from Greensburg, Kansas, 2009. The shell of a home (a), a 

still-empty lot (b), vacant business space (c), a view looking north from atop the Silo 

Eco-home (d) (photos by author, 10 June 2009). 

 

Greensburg has become a laboratory for what a town can potentially become in 

terms of its impact on the environment.  But the impact on the town and its inhabitants is 

the focus here, and that impact was devastating.  Buildings devoted to human service, 
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such as the hospital and city hall, were among those plucked away by the tornado.  Most 

of the vehicles in town were ruined, and with 95 percent of the buildings destroyed and 

city government facilities gone, people were literally left with nowhere to go and no one 

to whom they could turn (Pless et al. 2010). 

Since the event, approximately one-third of the residents have moved 

permanently (Barnhart 2010), further weakening the recovery effort.  In revisiting 

Greensburg two years post-event, I noted that much of the town looked, and “felt” the 

same as it did during a visit about one month following the tornado.  Long stretches of 

road through residential neighborhoods dotted with vacant houses, empty lots where 

houses and businesses once stood, and eerie images of stripped and skewed trees 

scattered throughout.  The Greensburg tornado recorded the second highest TICV score, 

and resulting from that score and the Jenks breaks applied to the array of scores as a 

whole, easily landed in the highest TICV category: TC5.  The impact descriptor for that 

category is “devastating,” and given the near-total destruction of the community, the 

massive federally-directed response to the scene, the out-migration of residents and the 

on-going recovery as of this writing, a TC5 rating should, to borrow a phrase from the 

U.S. Supreme Court, seem perfectly plausible to anyone with a rudimentary sense of 

reason. 

When comparing this event to the Manhattan, Enterprise and/or Ladysmith 

tornadoes, the difference in the category levels becomes clear.  Manhattan, rated at TC1, 

certainly felt the impact of the June 2008 tornado, but dispersed the recovery effort 

amongst the large population, and one year later, the vast majority of damage had been 

repaired.  Enterprise and Ladysmith, both TC3s, were heavily impacted, and recovery 
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took several years, but was nonetheless achieved (Ladysmith) or is well on the way to 

being achieved (Enterprise).  This is not to say that those communities are not forever 

changed, but they have returned to what one could consider a usual day-to-day routine.  

Greensburg, as well as Hallam, NE, and Paisley, FL (two of the three other TC5s by this 

scale), were, in large part, quite literally ripped from the face of the earth.  Enough was 

left to build again, and with support from surrounding communities as well as the 

intangible internal support structure of friends and neighbors that appears in the wake of a 

disaster, these communities remain.  However, the impact of the devastating tornadoes 

that struck their cities lingers.  “Levels of impact mean different things to different people 

in different situations” (Tobin and Montz 1997, 7).  It is hoped that this rating scale can 

help put these events, and their different meanings into better perspective.  Table 4.13 

displays the summary statistics for these four events. 

Table 4.15: Summary statistics for the four events examined above. 

Community Population Date EFS Damage Fatalities Damage 
Score 

Vulnerability 
Score TICV TC 

Manhattan, KS 44,831 6/11/2008 4 $66M 0 1,472 22 (LM) 181 1 

Enterprise, AL 21,178 3/1/2007 4 $250M 9 15,251 23 (M) 596 3 

Ladysmith, WI 3,932 9/2/2002 3 $25M 0 7,566 29 (MH) 470 3 

Greensburg, KS 1,574 5/4/2007 5 $250M 11 207,751 28 (MH) 2,439 5 

The Sense of Place and Loss 

 
Yi Fu Tuan (1977, 154), in discussing our sense of place, how we feel attached to 

our homeland or to our community, stated that,  

The city or land is viewed as mother, and it nourishes; place is an archive of fond 

memories and splendid achievements that inspire the present; place is permanent and 

hence reassuring to man, who sees frailty in himself and chance and flux everywhere. 

 

 Community provides us with a sense of security, a place to return to, a place we 

recognize.  When tragedy strikes a place we hold dear, it is more than trees, high schools, 
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playground equipment and houses that are destroyed.  Those physical objects and 

coupled Platonic Forms represent people‟s childhood, a first home as a married couple, a 

tree planted with a favorite grandparent on Arbor Day; they represent memories and the 

tie felt to a location constructed by human hands.  The “places” we label as communities 

are more than just the physical setting, they hold the human experience within them, and 

over time, a bond forms between people and the places they inhabit; “meanings are not 

inherent in the nature of things”  (Stedman 2003, 672); we provide that meaning.  Tuan 

(1977, 149) continued, stating, “Should destruction occur we may reasonably conclude 

that the people would be thoroughly demoralized, since the ruin of their settlement 

implies the ruin of their cosmos.”  Disasters can cause us to feel less attached to place, if 

it has sufficiently changed.  The new place or the temporary arrangements made by those 

directing recovery efforts may simply not feel like home (Lewis 1979; Chamlee-Wright 

and Storr 2009). 

Not everyone deals with loss in the same manner, just as not everyone holds the 

same memories born of their community.  Bonanno (2004, 20) noted that for some people 

suffering losses resulting from a disaster is too much, and mental recovery cannot be 

achieved, while some, “suffer less intensely and for a much shorter period of time.”  

Violent loss can bring about higher levels of psychological suffering when compared to 

death by natural causes (Davis et al. 1998).  Bonanno (2004) further noted several studies 

that estimate the majority of the U.S. population will experience at least one traumatic 

event during the course of their lifetime (not necessarily a natural disaster).  One can be 

sure that each person will process losses in their own personal manner. 
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After a destructive event, people will also try as best they can to find meaning, to 

make sense of the tragedy (Davis et al. 1998; Currier et al. 2006), to find some benefit 

from the experience, and in some cases, change their very identity and outlook on life 

(Gillies 2006).  Extreme events bring trauma and loss, and these events often bring 

confusion and disorder; trying to find meaning in the event is a way for people to bring 

back some order to lives disrupted (Davis and McKearney 2003). 

A mathematical formula applied to the circumstances of a traumatic event cannot 

be seen as a grand explainer, it cannot return childhood memories, it cannot rebuild a 

house, and it cannot re-plant a favorite tree.  Indices such as the ones presented here 

should be taken for what they are; a quantitative representation of a highly qualitative 

event.  While the TICV cannot console the bereaved in a time of great loss, hopefully it 

can aid in furthering the process of trying to make sense of a tragedy by putting that 

tragedy into better perspective in terms of the level of impact.  As a CBS reporter noted 

(Grace 2002) after the Ladysmith, WI, event,  

The National Weather Service points out that this has been an unusually quiet 

tornado season. In an average year, by the first of September a thousand or so have 

touched down; this year it's been only half that many.  That statistic doesn't mean much 

in Ladysmith, where picking up the pieces from the holiday storm will be a painful 

process. 

Potential Practical Applications of the TICV 

Lindell and Prater (2003) state that assessing the impact of a disaster on a 

community is important for three reasons: 

1. Impact assessments can be used by community leaders in order to make a 

more informed decision as to how much (if any) external assistance may be 

needed; 
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2. Impact assessments can target specific sectors of the community to determine 

if  the impact disproportionately affected certain people or businesses; 

3. Impact assessments arising from previous events can be used as projection 

tools to better determine the effects of similar disasters on particular 

communities. 

 

 In the context of this research, the TICV may provide a useful tool for community 

leaders and/or emergency responders in the immediate aftermath of a tornado, so long as 

a government office, such as the city assessor, has access to an estimated damage figure.  

If fatalities are known to have occurred, they too could be used to calculate the TICV as 

described in this research, or eliminated if only the spatial extent of damage is desired.  

Even if the initial TICV and TC scores are revised at a later date, the immediate 

preliminary estimate may provide officials with a sense of the extent of the impact across 

the community.  Lindell and Prater‟s second point may be beyond the capabilities of the 

TICV, as it was designed to relate impact information on a community level, not specific 

segments within a community.  The TICV could, however, be modified to use estimated 

population via Landscan data to identify sub-sections of impacted communities. 

 The TICV scores and category scheme created here could be used to provide a 

baseline from which officials could then create hypothetical scenarios in which differing 

levels of impact occur within their communities to examine the range of TICV scores 

possible.  By examining potential impact scores for communities with similar social 

profiles and population sizes, officials may be better able to anticipate the immediate 

need for assistance, as well as be better able to determine, by researching the recovery 
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process of those communities, what may be in store for them in the event of a tornado.  

Future research, as discussed in the following chapter, may include relating TICV scores 

to recovery times, which would aid in any process of comparing events across similar 

communities.  An application using one component of the TICV, the vulnerability score, 

may be able to inform officials of the potential for impact as well, as the vulnerability 

score provides an indication as to the degree to which the population is at risk from any 

wide-spread traumatic event, not only tornadoes.  Finally, as calculated using PCA, the 

vulnerability scores may be compared across time (i.e., 2000–2010 census) to examine 

increases or decreases in patterns of community vulnerability. 
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CHAPTER 5 -  Conclusion 

Summary 

Scales indicating the level of physical strength of natural disasters are commonly 

used to relay information such as estimated wind speeds, atmospheric pressure, energy 

released and overall size.  What is less commonly reported is the impact a particular 

event carries with it and delivers to the communities struck, except for the usual news 

reports that describe the destruction with colorful language.  As our understanding of the 

human factor as a key component to disaster impact has matured, the development of 

scales that attempt to quantify this impact has lagged behind, and for good reason; it is a 

difficult element to quantify.  One individual‟s definition of “severe” may be markedly 

different from another‟s.  These measures are nonetheless important, as they can be used 

to determine pre-event vulnerability, compared to past events to predict impact, examine 

trends over time, or used post-event to determine (or stand as an indicator to) actual 

impact.  

In constructing the Tornado Impact-Community Vulnerability Index (TICV) and 

TICV Category values (TC) in this research, NOAA (SPC/NCDC) tornado data was 

entered into a GIS, and tracks intersecting community boundaries were extracted.  Next, 

individual track records and their associated narratives (NCDC) were examined in order 

to make the best determination concerning the amount of damage that occurred, and 

where it occurred, and any fatalities associated with that event.  If it was found that a 

track intersected a community but the damage or fatalities occurred in rural areas 

preceding the intersection, that track was removed from the dataset.  Further, tracks that 



 142 

crossed into multiple communities were segmented into discrete events, with one 

segment intersecting exactly one community, in order to: 

1. facilitate the spatial join feature within the GIS; 

2. ensure that each community struck was treated as an individual entity, as 

per the stated goals of this research.   

 

Tracks were then again inspected manually to check for errors, and then joined 

with the community data to produce the final tornado-based dataset to be used in 

calculating the TICV. 

To construct the vulnerability component of the TICV, data were gathered for all 

census-defined places in the U.S.  These data included information on age, race, 

education, housing stock (density, type), income and employment.  The initial dataset 

was reduced by eliminating data elements that were highly correlated to one another, and 

choosing (based on Cutter et al. 2003) data that are generally seen as acceptable measures 

of social vulnerability.  These data were then subjected to a principal components 

analysis and the resulting factor groups with their associated eigenvalues as weights used 

to indicate vulnerability among the communities in the tornado-based dataset discussed 

above. 

The two components of the TICV are a measure of physical damage and fatalities 

(referred to as the damage component) and an indicator of social vulnerability (referred to 

as the vulnerability component).  With a measure of each for each community in the 

dataset, the two were combined into a final measure, with the square root of that product 

resulting in the TICV score.  With an array of 981 TICV scores, a Jenks natural breaks 



 143 

function was applied in ArcMap to determine the six-class category scheme for the TICV 

categories, with zero representing no impact, and five indicating devastating impact. 

TICV scores ranged from zero to 2,743 (Hallam, NE, 22 May 2004), for a category score 

of TC5.  There were three additional communities that scored TC5: Greensburg, KS, 

Paisley, FL, and Ellsinore, MO.  Results were examined across FEMA Regions, with 

some higher-scoring events described in greater detail. 

Finally, the individual TICV values and resulting category values were compared 

across four communities from three FEMA regions: Greensburg, KS, Enterprise, AL, 

Ladysmith, WI, and Manhattan, KS.  Through that discussion, it was contended that the 

TICV can serve as an adequate measure of the impact of a tornado event.  Given that the 

TICV is sensitive to both the size of the community and pre-event vulnerability, and 

considering that it incorporates the level of physical impact, the TICV displays an index 

and category value that serves to aid in our understanding of the level to which a 

community has been impacted by a tornado. 

Major Findings of this Research 

Through the construction of the TICV and TC, several major findings emerged; 

these are enumerated below. 

 

1. A tornado does not have to be physically strong or violent to impart major 

impacts on a community.  While wind speed is undoubtedly an important 

factor in the amount of destruction that can occur, if a tornado strikes a 

populated section of town, killing several, or otherwise does a great deal 
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of monetary damage, then the wind speed rating becomes less of a concern 

than does the overall impact. 

2. The damage component is the key driver of the TICV and TC.  While 

higher instances of damage are, again, inextricably linked to more 

powerful events, overall impact is a major concern not only for those 

affected by the event, but for those directing recovery; weak tornadoes can 

have a strong overall impact.   

3. The degree to which a community will be affected by a tornado is also 

determined, in part, by social vulnerability.  While, as stated above, 

damage is the key driver, social vulnerability affects the ability of 

individuals and households to recover in the wake of a disaster. 

4. States with a high occurrence of tornado events annually may not 

necessarily record a high number of events that directly impact a 

community.  This was found to be a function of the density with which 

communities populate the state taken together with the frequency of 

tornado events. 

5. Small communities are more likely to suffer a greater degree of impact 

than will larger communities, even if the events striking both communities 

are of similar physical strength.  Small communities, especially those in 

rural areas, are often more vulnerable to hazards, and possess fewer 

resources from which to draw upon in order to initiate and sustain 

recovery. 
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Limitations of this Research 

Given the limited set of attributes contained within the SPC GIS data, track-

community intersections may not adequately describe the actual event.  For example, as 

described in the FEMA Region III  section in Chapter Four, the Stanleytown, VA, tornado 

touched down outside the community of record (Fieldale) and did the most damage to a 

factory in the rural area between Fieldale and Stanleytown; however, the path as reported 

by the NCDC crosses the physical boundary of Stanleytown only, and therefore, the 

damage score, vulnerability score, and TICV ratings were based on the population of that 

community (Figure 5.1).  A closer inspection of the location of the damaged areas may 

have revealed to what community those figures should be applied; however, that was not 

a feasible data selection option given the sheer number of tornado events from 2000–

2009.  Such an endeavor would require data collection involving not only the SPC and 

NCDC records available via Internet data portals, but personal communication with 

dozens or possibly hundreds of local and state authorities, as well as FEMA (for larger-

scale events), in order to request individual records be inspected to obtain finer scale data 

for both the tornado's actual path as well as the locations of damage. Furthermore, as 

stated in Chapter Three, the purpose of this work was to use the USTOR2000 dataset to 

calculate and create the TICV scores and categories in order to present a method by 

which impact can be described, not to rectify the NOAA/SPC tornado record. 

It is recognized that communities exist in the dataset which have been assigned 

scores that may not accurately reflect the impact on the community in which the tornado 

crossed, and as such, a certain degree of error is naturally present in the TICV scores and 

category break values, as is likely to exist in any study of this nature (Giannetti et al. 
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2009).  The TICV, nonetheless, was constructed with the intention of providing a score 

and category rating to describe physical damage and impact as best as possible given the 

data available.  A suggested use of the TICV for individual communities in this dataset, if 

the given damage figure is in question, and a community authority would like a more 

accurate measure, is to simply recalculate the score based on new data.  With a method in 

place to make these calculations, future events could be scored in close temporal 

proximity to the actual events as they occur, resulting in a more accurate TICV value and 

category assignment.  A comprehensive study into the details of each historical event 

(e.g., Grazulis 1993) in the NOAA tornado record may, in the future, yield a TICV 

baseline that is more accurate than the results presented here. 

Figure 5.1: The Stanleytown (Fieldale), VA, tornado, 17 September 2004. 
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Potential Future Research 

Future research using the methods presented here may include examining whether 

or not there is a relationship between the TICV score and the length of time required by a 

community to make a recovery from the event.  This type of study could take the form of 

stating explicit definitions of what constitutes recovery, and the stages passed through 

along the way to full recovery, then comparing a measure for each stage of recovery to 

the TICV score for that event.  In such a study, a closer examination of one or two 

individual communities could serve as examples of the recovery process as it continues.   

A second avenue of future research may entail modifying the methods presented 

here as needed to create a scale by which tornadoes that remain in rural areas could be 

rated.  Within this research, events in unpopulated areas were not considered, as they are 

seen as socially different from tornadoes that strike more densely populated and census-

defined communities.  A scale tailored specifically to rural events could provide a similar 

measure of impact as presented here.   

A third possibility for continued research includes devising a method to include 

injuries into the TICV.  As stated in Chapter Three, injuries can vary widely, and as such, 

were not included here.  Injuries can, however, remove people from their usual functions 

in a community (if the injury is severe enough) and as such could constitute a loss to that 

community in some manner.  

The release of the 2010 decennial U.S. provides a fourth possibility for continuing 

the examination of vulnerability as presented here.  Using the same 19 indicators of 

vulnerability that resulted from the PCA in Chapter Three, a new array of vulnerability 

scores for 2010 could be derived and compared to those used here.  PCA is a very useful 
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method for comparing data across time, and such a study would provide an indicator of 

the increase or decrease of vulnerability among U.S. communities.  

Finally, a fifth potential avenue of future research may be to use, in part, the 

results of this research in combination with a closer examination of the inconsistencies 

both within and between the SPC record and the NCDC record.  Consistent data is 

important to researchers in that different conclusions could be reached depending on 

which dataset is employed.  Given the simplicity with which the SPC presents the GIS 

shapefile data, and the lack of agreement on injuries, fatalities and damage values in 

some cases, an examination of the reliability of the data may be useful for future research 

efforts.    

Conclusion 

This research has shown that different communities can be impacted at different 

levels in the wake of a tornado.  Although the inverse relationship between impact and 

frequency holds true here, it is concluded that EFS classifications do not always relay the 

level of impact realistically; the EFS is often times misinterpreted as an indicator of 

severity.  Weak tornadoes can impart heavy impact on a community, and violent 

tornadoes can produce light impact. 

The index presented here is intended to allow the level of impact from a tornado 

event to be described.  While an index value cannot be seen as the final answer to the 

question of impact, it can be used to help put the event into context.  Additionally, 

measures such as the TICV could potentially serve in a practical capacity, in that they 

could provide information that may be of use to emergency planners and other 

community officials should a disaster occur.   
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While some potential does exist to modify these methods, in its present form, the 

TICV can be seen as an indicator of severity, and as a measure of sensitivity as well.  

While many of the scores grouped in the lowest two categories (TC0 and TC1), the 

category values TC2 through TC5 show sufficient levels of increasing impact to allow 

them to be categorized in a more qualitative manner, as is shown by the category impact 

descriptors of moderate, heavy, severe, and devastating respectively.  While these 

descriptors are qualitative measures, they serve to illustrate the use of an index of this 

nature; to make a difficult situation easier to understand through the application of 

research into the dynamics that make up such events. 

The vulnerability scores presented here give insight into the level of risk these 

communities possess pre-event, and those, in concert with the physical impact of a 

tornado, provide a baseline measurement by which future events may be mitigated 

against.  Additionally, the vulnerability score based on the 2000 census, may provide a 

baseline against the 2010 census by which changes in the level of vulnerability for these 

communities (or for all U.S. communities) could be estimated.  Measures such as these 

can also provide a window into the advancement of issues of social justice, as social 

vulnerability can be used as an indicator of access to resources. 

As our scientific understanding of phenomenal weather events continues to 

increase, the drive to understand the complex dynamics of societal-environmental 

relationships needs to continue as well.  Should a tornado run through an abandoned 

town, one to which no one has property of value, or to which no connections to that place 

exist, then the impact on that “community” will be zero.  However, with population 

increasing every day, and more and more people moving into non-rural communities, we 
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are furthering the potential for tornadoes to move through built areas where property does 

matter, people are at risk for harm, and intangibles such as our attachment to place and 

community can be blown away in seconds.  An index value cannot stop phenomenal 

weather events from occurring, but it is hoped that this research can provide a 

measurement by which communities, and the people within them, can gain an 

understanding of the level of impact of a destructive tornado.  
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Appendix A - USTOR2000 Retention Values and Percentages. 

Table A.1: Data exclusion and retention. 

 

State 
Initial 

Dataset 

USTOR2000 

(Retained) 

Total 

Removed 
% Removed % Retained 

Alabama  596 79 517 86.74 13.26 
Arkansas  460 27 433 94.13 5.87 
Arizona  35 4 31 88.57 11.43 
California  83 11 72 86.75 13.25 
Colorado  405 7 398 98.27 1.73 
Connecticut  15 3 12 80.00 20.00 
Delaware  2 0 2 100.00 0.00 
Florida  564 106 458 81.21 18.79 
Georgia  365 42 323 88.49 11.51 
Iowa  580 39 541 93.28 6.72 
Idaho  44 3 41 93.18 6.82 
Illinois  582 58 524 90.03 9.97 
Indiana  224 38 186 83.04 16.96 
Kansas  1,121 20 1,101 98.22 1.78 
Kentucky  240 19 221 92.08 7.92 
Louisiana  399 29 370 92.73 7.27 
Massachusetts  10 2 8 80.00 20.00 
Maryland  85 16 69 81.18 18.82 
Maine  19 1 18 94.74 5.26 
Michigan  139 5 134 96.40 3.60 
Minnesota  419 30 389 92.84 7.16 
Missouri  574 43 531 92.51 7.49 
Mississippi  550 38 512 93.09 6.91 
Montana  62 0 62 100.00 0.00 
North Carolina  294 15 279 94.90 5.10 
North Dakota  339 19 320 94.40 5.60 
Nebraska  532 16 516 96.99 3.01 
New 

Hampshire  
4 1 3 75.00 25.00 

New Jersey  14 2 12 85.71 14.29 
New Mexico  78 2 76 97.44 2.56 
Nevada  16 0 16 100.00 0.00 
New York  76 2 74 97.37 2.63 
Ohio  158 15 143 90.51 9.49 
Oklahoma  462 39 423 91.56 8.44 
Oregon  29 0 29 100.00 0.00 
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State 
Initial 

Dataset 
USTOR2000 
(Retained) 

Total 
Removed 

% Removed % Retained 

Pennsylvania  107 8 99 92.52 7.48 
South Carolina  284 42 242 85.21 14.79 
South Dakota  319 8 311 97.49 2.51 
Tennessee  277 51 226 81.59 18.41 
Texas  1,447 86 1,361 94.06 5.94 
Utah  24 2 22 91.67 8.33 
Virginia  238 23 215 90.34 9.66 
Vermont  7 0 7 100.00 0.00 
Washington  31 1 30 96.77 3.23 
Wisconsin  254 24 230 90.55 9.45 
West Virginia  17 0 17 100.00 0.00 
Wyoming  74 5 69 93.24 6.76 

Totals 12,657 981 11,676 92.25 7.75 
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Appendix B - USTOR2000. 

Table B.1: 981-count dataset, USTOR2000. 

  

State Community Population Date EFS Deaths Damage Damage 

Component 

Vulnerability 

Score 

Damage 

Score 

TICV TC 

AL  Abbeville 2,987 11/5/2002 2 1 $3,000,000  $10,570,000  32 3539 336 2 

AL  Adamsville 4,965 3/1/2007 1 0 $100,000  $104,000  21 21 21 1 

AL  Alabaster 22,619 3/26/2009 0 0 $10,000  $10,000  18 0 3 1 

AL  Alabaster 22,619 4/19/2009 0 0 $15,000  $15,000  18 1 3 1 

AL  Albertville 17,247 9/22/2006 1 0 $90,000  $96,300  27 6 12 1 

AL  Aliceville 2,567 4/6/2005 0 0 $50,000  $54,500  35 21 27 1 

AL  Ashland 1,965 5/7/2003 0 0 $2,000  $2,340  32 1 6 1 

AL  Ashville 2,260 12/16/2000 2 0 $125,000  $155,000  25 69 41 1 

AL  Beaverton 226 2/6/2008 1 0 $50,000  $50,000  28 221 79 1 

AL  Black 202 4/13/2009 0 0 $150,000  $150,000  28 743 145 1 

AL  Blue Springs 121 1/11/2008 1 0 $70,000  $70,000  21 579 109 1 

AL  Blue Springs 121 2/17/2008 1 0 $75,000  $75,000  21 620 113 1 

AL  Carbon Hill 2,071 11/10/2002 3 4 $500,000  $28,595,000  35 13807 691 3 

AL  Carrollton 987 5/6/2009 1 0 $50,000  $50,000  33 51 41 1 

AL  Chelsea 2,949 2/27/2009 0 0 $5,000  $5,000  15 2 5 1 

AL  Childersburg 4,927 4/8/2006 0 0 $30,000  $32,100  30 7 14 1 

AL  Clanton 7,800 2/17/2008 0 0 $10,000  $10,000  29 1 6 1 

AL  Clanton 7,800 9/16/2009 1 0 $150,000  $150,000  29 19 23 1 

AL  Cordova 2,423 5/6/2009 1 0 $260,000  $260,000  36 107 62 1 

AL  Dadeville 3,212 4/11/2007 1 0 $20,000  $20,800  31 6 14 1 

AL  Daleville 4,653 11/25/2001 1 0 $3,000,000  $3,660,000  27 787 144 1 
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State Community Population Date EFS Deaths Damage Damage 
Component 

Vulnerability 
Score 

Damage 
Score 

TICV TC 

AL  Decatur 53,929 5/6/2009 2 0 $250,000  $305,000  27 6 12 1 

AL  Demopolis 7,540 11/30/2006 1 0 $500,000  $535,000  29 71 45 1 

AL  Dora 2,413 11/10/2002 1 0 $400,000  $476,000  32 197 79 1 

AL  Enterprise 21,178 3/1/2007 1 0 $4,000,000  $4,000,000  23 189 66 1 

AL  Enterprise 21,178 10/8/2008 4 9 $250,000,000  $323,000,000  23 15252 596 3 

AL  Gardendale 11,626 4/8/2006 1 0 $500,000  $535,000  19 46 30 1 

AL  Geneva 4,388 12/16/2000 2 1 $2,500,000  $10,100,000  31 2302 267 2 

AL  Guntersville 7,395 2/6/2008 1 0 $0  $0  25 0 0 0 

AL  Haleyville 4,182 4/7/2006 1 0 $2,000  $2,140  30 1 4 1 

AL  Heflin 3,002 5/11/2008 1 0 $1,800,000  $1,800,000  28 600 131 1 

AL  Highland Lake 408 3/15/2008 2 0 $960,000  $960,000  15 2353 191 2 

AL  Hollywood 950 5/6/2003 0 0 $5,000  $5,850  26 6 13 1 

AL  Hueytown 15,364 5/31/2004 0 0 $250,000  $282,500  21 18 20 1 

AL  Huntsville 158,216 4/2/2009 0 0 $8,000  $8,000  21 0 1 1 

AL  Jasper 14,052 5/6/2009 0 0 $850,000  $850,000  25 60 39 1 

AL  La Fayette 3,234 11/15/2006 0 0 $50,000  $53,500  34 17 24 1 

AL  Leeds 10,455 2/26/2008 1 1 $1,000,000  $8,000,000  23 765 134 1 

AL  Lester 107 10/18/2004 0 0 $0  $0  19 0 0 0 

AL  Level Plains 1,544 1/13/2006 0 0 $500,000  $535,000  22 347 87 1 

AL  Lexington 840 10/18/2004 1 0 $5,000  $5,650  26 7 13 1 

AL  Lincoln 4,577 8/31/2001 1 0 $75,000  $91,500  22 20 21 1 

AL  Linden 2,424 5/10/2006 1 0 $24,000  $25,680  32 11 19 1 

AL  Lineville 2,401 5/7/2003 0 0 $3,000  $3,510  33 1 7 1 

AL  Madison 29,329 5/6/2003 0 0 $0  $0  16 0 0 0 

AL  McIntosh 244 1/10/2009 1 0 $2,500,000  $2,500,000  26 10246 517 3 

AL  Meridianville 4,117 5/6/2003 1 0 $100,000  $117,000  16 28 22 1 
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State Community Population Date EFS Deaths Damage Damage 
Component 

Vulnerability 
Score 

Damage 
Score 

TI CV TC 

AL  Montgomery 201,568 11/15/2006 2 0 $500,000  $549,000  25 3 8 1 

AL  Moundville 1,809 11/24/2001 0 0 $7,000  $8,540  31 5 12 1 

AL  Northport 19,435 4/30/2005 0 0 $95,000  $103,550  23 5 11 1 

AL  Oak Grove 457 11/24/2001 2 0 $800,000  $976,000  28 2136 246 2 

AL  Oakman 944 12/10/2008 1 0 $215,000  $215,000  31 228 85 1 

AL  Oneonta 5,576 9/22/2006 2 0 $1,500,000  $1,605,000  27 288 88 1 

AL  Orange Beach 3,784 9/15/2004 0 0 $0  $0  20 0 0 0 

AL  Orange Beach 3,784 9/15/2004 0 0 $0  $0  20 0 0 0 

AL  Owens Cross 
Roads 

1,124 5/3/2009 1 0 $30,000  $30,000  20 27 23 1 

AL  Ozark 15,119 1/7/2007 0 0 $25,000  $26,000  30 2 7 1 

AL  Ozark 15,119 4/14/2007 1 0 $250,000  $260,000  30 17 23 1 

AL  Pell City 9,565 11/24/2004 1 0 $250,000  $56,500  22 6 24 1 

AL  Pell City 9,565 2/26/2008 2 0 $500,000  $610,000  22 64 37 1 

AL  Pinckard 667 10/8/2008 0 0 $0  $0  25 0 0 0 

AL  Prattville 24,303 2/17/2008 3 0 $10,000,000  $10,000,000  21 411 94 1 

AL  Redstone 
Arsenal 

2,365 7/14/2004 0 0 $10,000  $11,300  24 5 11 1 

AL  Riverside 1,564 11/24/2001 2 0 $0  $0  22 0 0 0 

AL  Sand Rock 509 11/24/2001 2 2 $300,000  $14,366,000  23 28224 802 4 

AL  St. Florian 335 4/7/2006 0 0 $0  $0  18 0 0 0 

AL  Tallassee 4,934 4/25/2003 0 0 $45,000  $52,650  32 11 18 1 

AL  Thorsby 1,820 4/3/2000 0 0 $50,000  $62,000  22 34 28 1 

AL  Trinity 1,841 11/24/2001 2 0 $250,000  $305,000  17 166 53 1 

AL  Tuscaloosa 77,906 12/16/2000 1 0 $100,000  $117,000  24 2 6 1 

AL  Tuscaloosa 77,906 11/18/2003 4 11 $12,500,000  $92,500,000  24 1187 168 1 

AL  Tuscumbia 7,856 4/7/2006 1 0 $125,000  $133,750  27 17 22 1 

AL  Uniontown 1,636 10/13/2001 1 0 $110,000  $134,200  37 82 55 1 
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State Community Population Date EFS Deaths Damage Damage 
Component 

Vulnerability 
Score 

Damage 
Score 

TICV TC 

AL  Winfield 4,540 9/25/2005 1 0 $8,000  $8,720  26 2 7 1 

AR Benton 21,906 2/18/2000 1 0 $0  $0  23 0 0 0 

AR Benton 21,906 5/16/2003 2 0 $50,000  $58,500  23 3 8 1 

AR Benton 21,906 4/3/2008 2 0 $5,000,000  $5,000,000  23 228 72 1 

AR Bentonville 19,730 3/12/2006 2 0 $100,000  $100,000  21 5 10 1 

AR Bentonville 19,730 5/10/2008 1 0 $100,000  $107,000  21 5 11 1 

AR Bryant 9,764 5/16/2003 2 0 $0  $0  19 0 0 0 

AR Cabot 15,261 4/3/2008 1 0 $300,000  $300,000  19 20 19 1 

AR Cabot 15,261 9/13/2008 2 0 $2,000,000  $2,000,000  19 131 50 1 

AR Carlisle 2,304 5/2/2008 1 0 $1,000,000  $1,000,000  30 434 114 1 

AR Cherokee 
Village 

4,648 11/1/2004 0 0 $0  $0  24 0 0 0 

AR Cotton Plant 960 12/18/2002 1 0 $0  $0  39 0 0 0 

AR Eudora 2,819 4/24/2003 0 0 $300,000  $351,000  37 125 68 1 

AR Fordyce 4,799 4/29/2004 1 0 $0  $0  33 0 0 0 

AR Hamburg 3,039 2/5/2008 1 0 $40,000  $40,000  32 13 20 1 

AR Harrisburg 2,192 5/16/2003 1 0 $50,000  $58,500  33 27 29 1 

AR Higginson 378 2/24/2001 1 0 $0  $0  28 0 0 0 

AR Humphrey 806 11/1/2004 0 0 $0  $0  32 0 0 0 

AR Little Flock 2,585 3/12/2006 2 0 $100,000  $107,000  23 41 31 1 

AR Lonoke 4,287 2/24/2001 1 0 $0  $0  30 0 0 0 

AR Magnolia 10,858 10/29/2009 1 0 $75,000  $75,000  30 7 14 1 

AR Mena 5,637 4/9/2009 3 3 $25,000,000  $46,000,000  32 8160 509 3 

AR North Crossett 3,581 2/24/2007 0 0 $0  $0  29 0 0 0 

AR Pine Bluff 55,085 10/29/2009 1 0 $400,000  $400,000  31 7 15 1 

AR Rogers 38,829 3/12/2006 2 0 $100,000  $107,000  22 3 8 1 

AR Stuttgart 9,745 5/10/2008 3 0 $75,000,000  $75,000,000  30 7696 478 3 
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State Community Population Date EFS Deaths Damage Damage 
Component 

Vulnerability 
Score 

Damage 
Score 

TICV TC 

AZ Carefree 2,927 2/28/2003 0 0 $0  $0  12 0 0 0 

AZ Cave Creek 3,728 2/28/2003 0 0 $0  $0  14 0 0 0 

AZ Flagstaff 52,894 9/9/2003 0 0 $0  $0  22 0 0 0 

AZ Scottsdale 202,705 2/28/2003 0 0 $0  $0  16 0 0 0 

CA Durham 5,220 4/8/2005 0 0 $5,000  $5,450  16 1 4 1 

CA Elk Grove 59,984 2/25/2007 0 0 $2,000  $2,080  19 0 1 1 

CA Lathrop 10,445 4/8/2005 0 0 $10,000  $10,900  19 1 4 1 

CA March AFB 370 5/22/2008 2 0 $350,000  $350,000  27 946 160 1 

CA Merced 63,893 12/16/2002 0 0 $10,000  $10,700  29 0 2 1 

CA Merced 63,893 3/28/2006 1 0 $400,000  $476,000  29 7 15 1 

CA Perris 36,189 5/22/2008 0 0 $0  $0  28 0 0 0 

CA Poway 48,044 11/10/2000 1 0 $73,000  $90,520  16 2 5 1 

CA Rosamond 14,349 9/1/2007 0 0 $175,000  $182,000  23 13 17 1 

CA South Yuba 
City 

12,651 5/9/2005 0 0 $85,000  $92,650  18 7 12 1 

CA Visalia 91,565 1/27/2008 0 0 $800,000  $800,000  24 9 15 1 

CO Aurora 276,393 6/7/2009 1 0 $500,000  $500,000  21 2 6 1 

CO Black Forest 13,247 6/20/2004 1 0 $0  $0  12 0 0 0 

CO Broomfield 38,272 6/7/2009 0 0 $25,000  $25,000  16 1 3 1 

CO Brush 5,117 7/12/2000 0 0 $0  $0  29 0 0 0 

CO Gilcrest 1,162 5/22/2008 3 0 $0  $0  22 0 0 0 

CO Penrose 4,070 6/15/2004 0 0 $1,000  $1,130  23 0 3 1 

CO Windsor 9,896 5/22/2008 3 1 $125,000,000  $132,000,000  17 13339 477 3 

CT Madison 
Center 

2,222 7/31/2009 1 0 $10,000  $10,000  15 5 8 1 

CT Wethersfield 26,271 6/26/2009 1 0 $750,000  $750,000  19 29 23 1 

FL Apalachicola 2,334 10/27/2006 1 0 $1,000,000  $1,070,000  33 458 123 1 

FL Auburndale 11,032 8/12/2009 0 0 $0  $0  30 0 0 0 
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Component 

Vulnerability 
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Damage 
Score 

TICV TC 

FL Big Pine Key 5,032 8/18/2008 0 0 $1,000  $1,000  19 0 2 1 

FL Black 
Diamond 

694 7/9/2005 0 0 $0  $0  11 0 0 0 

FL Bonita Springs 32,797 3/27/2003 0 0 $0  $0  18 0 0 0 

FL Boynton 
Beach 

60,389 4/10/2007 0 0 $10,000  $10,400  25 0 2 1 

FL Brandon 77,895 7/9/2005 0 0 $40,000  $43,600  20 1 3 1 

FL Cape Coral 102,286 9/16/2007 0 0 $0  $0  22 0 0 0 

FL Cape Coral 102,286 8/16/2009 1 0 $4,000,000  $4,160,000  22 41 30 1 

FL Casselberry 22,629 5/19/2009 0 0 $0  $0  24 0 0 0 

FL Charlotte 
Harbor 

3,647 6/29/2003 0 0 $30,000  $32,100  26 9 15 1 

FL Charlotte 
Harbor 

3,647 6/21/2006 0 0 $50,000  $58,500  26 16 20 1 

FL Citrus Springs 4,157 3/29/2001 0 0 $0  $0  25 0 0 0 

FL Clearwater 108,787 5/22/2009 0 0 $0  $0  25 0 0 0 

FL Clewiston 6,460 8/13/2004 2 0 $50,000  $56,500  26 9 15 1 

FL Combee 
Settlement 

5,436 5/12/2009 0 0 $0  $0  32 0 0 0 

FL Crescent 
Beach 

985 6/12/2007 0 0 $0  $0  18 0 0 0 

FL Crescent 
Beach 

985 4/13/2009 0 0 $0  $0  18 0 0 0 

FL Cudjoe Key 1,695 8/18/2008 0 0 $1,000  $1,000  15 1 3 1 

FL Davenport 1,924 8/13/2004 0 0 $0  $0  31 0 0 0 

FL Daytona 
Beach 

64,112 12/25/2006 0 0 $50,000,000  $53,500,000  28 834 154 1 

FL De Land 20,904 12/25/2006 2 0 $2,500,000  $2,675,000  30 128 62 1 

FL De Land 20,904 2/2/2007 3 0 $52,000,000  $54,080,000  30 2587 281 2 

FL Dundee 2,912 4/15/2007 0 0 $250,000  $260,000  31 89 53 1 

FL Dunnellon 1,898 9/15/2004 1 0 $0  $0  27 0 0 0 

FL Eustis 15,106 9/20/2007 1 0 $6,200,000  $6,448,000  29 427 112 1 

FL Everglades 479 2/12/2008 0 0 $444,600  $444,600  20 928 137 1 
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State Community Population Date EFS Deaths Damage Damage 
Component 

Vulnerability 
Score 

Damage 
Score 

TICV TC 

FL Flagler Beach 4,954 7/22/2007 0 0 $0  $0  21 0 0 0 

FL Fruit Cove 16,077 9/5/2004 0 0 $15,000  $16,950  14 1 4 1 

FL Graceville 2,402 9/25/2002 0 0 $0  $0  32 0 0 0 

FL Grand Ridge 792 3/20/2003 2 0 $500,000  $585,000  30 739 148 1 

FL Greater 
Carrollwood 

33,519 6/30/2009 0 0 $20,000  $20,000  19 1 3 1 

FL Green Cove 
Springs 

5,378 3/29/2001 2 0 $1,000,000  $1,220,000  26 227 77 1 

FL Gulf Breeze 5,665 9/15/2004 0 0 $3,000  $3,390  16 1 3 1 

FL Hernando 8,253 3/29/2001 0 0 $75,000  $91,500  28 11 18 1 

FL Hialeah 226,419 8/21/2001 0 0 $0  $0  31 0 0 0 

FL Hialeah 226,419 8/14/2008 1 0 $150,000  $150,000  31 1 5 1 

FL Highland City 2,051 4/23/2005 1 0 $250,000  $272,500  31 133 64 1 

FL Homestead 31,909 1/2/2002 1 0 $50,000  $59,500  32 2 8 1 

FL Hudson 12,765 3/4/2001 0 0 $250,000  $305,000  24 24 24 1 

FL Inglis 1,491 10/15/2002 1 0 $50,000  $59,500  27 40 33 1 

FL Islamorada, 
Village of 

Islands 

6,846 9/10/2008 1 0 $120,000  $120,000  18 18 18 1 

FL Jacksonville 735,617 8/12/2004 2 0 $0  $0  23 0 0 0 

FL Jacksonville 735,617 7/14/2007 0 0 $0  $0  23 0 0 0 

FL Jacksonville 735,617 6/26/2009 0 0 $0  $0  23 0 0 0 

FL Key Largo 11,886 12/18/2009 0 0 $5,000  $5,000  21 0 3 1 

FL Key West 25,478 9/29/2008 0 0 $0  $0  19 0 0 0 

FL Lady Lake 11,828 2/2/2007 3 8 $52,000,000  $110,080,000  23 9307 465 3 

FL Lake City 9,980 3/7/2008 2 1 $4,000,000  $11,000,000  33 1102 190 2 

FL Lake Mack-
Forest Hills 

989 2/2/2007 3 0 $0  $0  29 0 0 0 

FL Lake Park 8,721 8/7/2003 1 0 $0  $0  28 0 0 0 

FL Lake Wales 10,194 8/13/2004 0 0 $0  $0  31 0 0 0 
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State Community Population Date EFS Deaths Damage Damage 
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Vulnerability 
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Damage 
Score 

TICV TC 

FL Lakeland 78,452 6/24/2006 0 0 $0  $0  28 0 0 0 

FL Land O' Lakes 20,971 5/31/2005 1 0 $80,000  $87,200  18 4 9 1 

FL Largo 69,371 6/23/2005 0 0 $0  $0  26 0 0 0 

FL Lochmoor 
Waterway 

Estates 

3,858 6/8/2004 0 0 $35,000  $39,550  18 10 14 1 

FL Marathon 10,255 6/24/2007 0 0 $2,000  $2,000  23 0 2 1 

FL Marathon 10,255 2/13/2008 0 0 $2,500  $2,600  23 0 2 1 

FL Mexico Beach 1,017 9/15/2004 0 0 $0  $0  22 0 0 0 

FL Miami 362,470 8/21/2001 0 0 $0  $0  31 0 0 0 

FL Miami Springs 13,712 8/21/2001 0 0 $0  $0  21 0 0 0 

FL Micco 9,498 8/19/2008 0 0 $420,000  $420,000  23 44 32 1 

FL Miramar 
Beach 

2,435 9/25/2002 1 0 $550,000  $654,500  19 269 71 1 

FL Molino 1,312 2/17/2008 1 0 $750,000  $750,000  25 572 120 1 

FL Naples 20,976 3/27/2003 1 0 $50,000  $58,500  16 3 7 1 

FL New Smyrna 
Beach 

20,048 2/2/2007 1 0 $6,000,000  $6,240,000  23 311 84 1 

FL North Fort 
Myers 

40,214 6/8/2008 1 0 $100,000  $100,000  23 2 8 1 

FL Ocala 45,943 4/7/2005 1 0 $0  $0  28 0 0 0 

FL Ormond 
Beach 

36,301 7/24/2009 0 0 $0  $0  20 0 0 0 

FL Paisley 734 2/2/2007 3 13 $46,000,000  $138,840,000  26 189155 2224 5 

FL Palatka 10,033 6/21/2005 0 0 $0  $0  36 0 0 0 

FL Palm Beach 
Gardens 

35,058 3/31/2009 0 0 $75,000  $75,000  17 2 6 1 

FL Palm Harbor 59,248 8/12/2000 0 0 $500,000  $620,000  20 10 15 1 

FL Palmetto 12,571 6/18/2003 0 0 $2,000  $2,340  28 0 2 1 

FL Panama City 36,417 10/8/2008 0 0 $500,000  $500,000  27 14 19 1 

FL Pelican Bay 5,686 12/21/2007 0 0 $15,000  $15,600  12 3 6 1 

FL Pensacola 56,255 10/18/2007 1 0 $1,000,000  $1,040,000  25 18 22 1 
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Vulnerability 
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Damage 
Score 

TICV TC 

FL Port Charlotte 46,451 8/13/2004 0 0 $75,000  $93,000  26 2 7 1 

FL Port Charlotte 46,451 6/21/2006 2 0 $500,000  $535,000  26 12 17 1 

FL Port Orange 45,823 7/24/2009 0 0 $2,500,000  $2,500,000  23 55 36 1 

FL Riviera Beach 29,884 8/7/2003 1 0 $80,000,000  $93,600,000  29 3132 302 2 

FL Rockledge 20,170 8/6/2003 0 0 $0  $0  23 0 0 0 

FL Rockledge 20,170 10/23/2005 0 0 $50,000  $54,500  23 3 8 1 

FL Royal Palm 
Beach 

21,523 7/2/2007 0 0 $0  $0  20 0 0 0 

FL Sanibel 6,064 6/13/2000 0 0 $0  $0  13 0 0 0 

FL Sanibel 6,064 8/13/2004 1 0 $0  $0  13 0 0 0 

FL Sharpes 3,415 4/14/2009 0 0 $0  $0  28 0 0 0 

FL South 
Bradenton 

21,587 6/8/2004 0 0 $15,000  $16,950  31 1 5 1 

FL St. Pete Beach 9,929 6/8/2002 0 0 $500,000  $595,000  18 60 32 1 

FL Stock Island 4,410 12/18/2009 0 0 $10,000  $10,000  29 2 8 1 

FL Tallahassee 150,624 6/4/2009 0 0 $1,000,000  $1,000,000  23 7 12 1 

FL Tampa 303,447 7/27/2009 0 0 $0  $0  25 0 0 0 

FL Thonotosassa 6,091 7/8/2003 1 0 $20,000  $23,400  23 4 9 1 

FL Town 'n' 
Country 

72,523 6/25/2000 0 0 $100,000  $124,000  23 2 6 1 

FL Town 'n' 
Country 

72,523 6/5/2002 0 0 $150,000  $178,500  23 2 7 1 

FL Wauchula 4,368 7/9/2005 0 0 $50,000  $54,500  33 12 20 1 

FL West and East 
Lealman 

21,753 7/9/2005 0 0 $0  $0  32 0 0 0 

FL West De Land 3,424 2/2/2007 3 0 $0  $0  24 0 0 0 

FL West Palm 
Beach 

82,103 3/31/2009 0 0 $25,000  $25,000  24 0 3 1 

FL Westchase 11,116 6/5/2002 0 0 $0  $0  15 0 0 0 

FL Wewahitchka 1,722 3/7/2005 0 0 $75,000  $81,750  31 47 38 1 

GA Albany 76,939 12/16/2000 2 0 $750,000  $930,000  30 12 19 1 
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State Community Population Date EFS Deaths Damage Damage 
Component 

Vulnerability 
Score 

Damage 
Score 

TICV TC 

GA Ashburn 4,419 12/15/2007 1 1 $1,300,000  $8,352,000  36 1890 263 2 

GA Atlanta 416,474 3/14/2008 2 1 $25,000,000  $32,000,000  22 77 41 1 

GA Baxley 4,150 11/5/2002 0 0 $200,000  $238,000  33 57 43 1 

GA Blakely 5,696 9/15/2004 0 0 $20,000  $22,600  35 4 12 1 

GA Brinson 225 8/29/2005 0 0 $0  $0  30 0 0 0 

GA Calhoun 10,667 5/1/2002 1 0 $3,000  $3,570  24 0 3 1 

GA Camilla 5,669 3/20/2003 3 6 $6,000,000  $49,020,000  34 8647 544 3 

GA Canton 7,709 5/6/2003 1 0 $10,000  $11,700  24 2 6 1 

GA Carrollton 19,843 2/26/2008 3 0 $7,000,000  $7,000,000  26 353 96 1 

GA Cedartown 9,470 8/29/2005 1 0 $50,000  $54,500  32 6 14 1 

GA Colquitt 1,939 9/15/2004 0 0 $125,000  $141,250  31 73 48 1 

GA Douglasville 20,065 3/7/2008 1 0 $2,000,000  $2,000,000  21 100 46 1 

GA Eastman 5,440 4/14/2007 1 0 $350,000  $364,000  30 67 45 1 

GA Eastman 5,440 4/15/2007 2 0 $500,000  $520,000  30 96 53 1 

GA Fitzgerald 8,758 4/13/2009 1 0 $200,000  $200,000  35 23 28 1 

GA Fort Valley 8,005 8/29/2005 2 0 $2,600,000  $2,834,000  34 354 110 1 

GA Gibson 694 4/10/2009 0 0 $4,000  $4,000  34 6 14 1 

GA Girard 227 12/28/2005 0 0 $0  $0  34 0 0 0 

GA Gumlog 2,025 4/10/2009 2 0 $0  $0  20 0 0 0 

GA Helen 430 8/29/2005 2 0 $3,000,000  $3,270,000  23 7605 418 3 

GA Lake Park 549 3/2/2007 0 0 $10,000  $10,400  27 19 23 1 

GA Lawrenceville 22,397 4/3/2000 1 0 $1,500,000  $1,860,000  21 83 42 1 

GA Lula 1,438 8/29/2005 0 0 $250,000  $272,500  26 190 70 1 

GA Macon 97,255 5/11/2008 2 0 $5,000,000  $5,000,000  31 51 40 1 

GA Marietta 58,748 4/8/2006 0 0 $150,000  $160,500  22 3 8 1 

GA McDonough 8,493 1/2/2006 1 0 $500,000  $535,000  24 63 39 1 
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Vulnerability 
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Damage 
Score 

TICV TC 

GA Palmetto 3,400 1/2/2006 2 0 $250,000  $267,500  27 79 46 1 

GA Reed Creek 2,148 8/26/2008 1 0 $0  $0  17 0 0 0 

GA Reed Creek 2,148 8/26/2008 0 0 $0  $0  17 0 0 0 

GA Richland 1,794 3/1/2007 1 0 $400,000  $416,000  35 232 91 1 

GA Rockmart 3,870 4/8/2006 2 0 $0  $0  29 0 0 0 

GA Senoia 1,738 1/5/2007 0 0 $45,000  $46,800  18 27 22 1 

GA Stockbridge 9,853 12/4/2005 0 0 $150,000  $163,500  21 17 19 1 

GA Summerville 4,556 4/10/2009 2 0 $900,000  $900,000  33 198 81 1 

GA Sumner 309 3/1/2007 2 0 $250,000  $260,000  28 841 154 1 

GA Sylvester 5,990 12/5/2005 1 0 $0  $0  33 0 0 0 

GA Tyrone 3,916 1/2/2006 2 0 $2,000,000  $2,140,000  15 546 90 1 

GA Winder 10,201 8/29/2005 0 0 $150,000  $163,500  26 16 20 1 

GA Woodstock 10,050 5/20/2008 1 0 $46,000,000  $46,000,000  17 4577 280 2 

IA  Altoona 10,345 5/30/2000 1 0 $0  $0  20 0 0 0 

IA  Ames 50,731 11/12/2005 2 0 $0  $0  19 0 0 0 

IA  Anita 1,049 5/18/2000 0 0 $0  $0  27 0 0 0 

IA  Aurora 194 9/6/2001 2 0 $300,000  $366,000  23 1887 209 2 

IA  Baxter 1,052 5/22/2004 0 0 $0  $0  26 0 0 0 

IA  Blue Grass 1,169 6/14/2001 2 0 $0  $0  18 0 0 0 

IA  Colfax 2,223 4/11/2001 1 0 $0  $0  20 0 0 0 

IA  Creston 7,597 9/11/2003 0 0 $250,000  $292,500  29 39 33 1 

IA  Cumming 162 6/22/2007 2 0 $700,000  $728,000  17 4494 273 2 

IA  Des Moines 198,682 10/2/2007 1 0 $0  $0  24 0 0 0 

IA  Dunkerton 749 5/11/2000 3 1 $500,000  $7,620,000  19 10174 437 3 

IA  Fruitland 703 6/1/2007 3 0 $15,000,000  $15,600,000  15 22191 573 3 

IA  George 1,051 6/11/2008 0 0 $0  $0  26 0 0 0 
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TICV TC 

IA  Independence 6,014 4/23/2001 0 0 $20,000  $24,400  22 4 9 1 

IA  Independence 6,014 6/1/2001 1 0 $1,000,000  $1,220,000  22 203 67 1 

IA  Iowa City 62,220 4/13/2006 1 0 $0  $0  20 0 0 0 

IA  Iowa City 62,220 4/13/2006 1 0 $70,000  $74,900  20 1 5 1 

IA  Le Claire 2,847 4/13/2006 1 0 $60,000  $64,200  19 23 21 1 

IA  Martelle 280 8/19/2009 0 0 $5,000  $5,000  20 18 19 1 

IA  Montrose 957 5/30/2004 1 0 $20,000  $22,600  24 24 24 1 

IA  Muscatine 22,697 4/13/2006 0 0 $0  $0  24 0 0 0 

IA  Muscatine 22,697 4/13/2006 0 0 $10,000  $10,700  24 0 3 1 

IA  Muscatine 22,697 6/1/2007 3 0 $1,000,000  $1,040,000  24 46 33 1 

IA  New Hartford 659 5/25/2008 5 2 $2,000,000  $16,000,000  23 24279 751 4 

IA  Norwalk 6,884 6/22/2007 1 0 $0  $0  18 0 0 0 

IA  Norwalk 6,884 6/22/2007 2 0 $300,000  $312,000  18 45 28 1 

IA  Parkersburg 1,889 5/25/2008 5 7 $17,000,000  $66,000,000  25 34939 931 4 

IA  Riceville 840 6/11/2004 0 0 $100,000  $113,000  25 135 58 1 

IA  Seymour 810 10/2/2007 1 0 $100,000  $104,000  29 128 61 1 

IA  Sioux City 85,013 3/30/2006 0 0 $0  $0  25 0 0 0 

IA  Sioux City 85,013 7/6/2008 0 0 $100,000  $107,000  25 1 6 1 

IA  State Center 1,349 9/5/2004 0 0 $0  $0  22 0 0 0 

IA  Story City 3,228 11/12/2005 0 0 $0  $0  22 0 0 0 

IA  Swan 121 5/18/2000 1 0 $0  $0  25 0 0 0 

IA  Walnut 778 5/8/2004 1 0 $0  $0  25 0 0 0 

IA  Waterloo 68,747 5/11/2000 3 0 $1,300,000  $1,612,000  26 23 25 1 

IA  West Des 
Moines 

46,403 9/6/2001 1 0 $0  $0  16 0 0 0 

IA  Winfield 1,131 4/25/2008 1 0 $10,000  $10,000  26 9 15 1 

ID Arbon Valley 627 4/28/2003 0 0 $0  $0  21 0 0 0 
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ID Roberts 647 6/1/2002 1 0 $0  $0  27 0 0 0 

IL  Alexis 863 4/13/2006 1 0 $100,000  $107,000  25 124 56 1 

IL  Bloomingdale 21,675 8/4/2008 1 0 $250,000  $250,000  15 12 13 1 

IL  Bloomingdale 21,675 8/4/2008 1 0 $500,000  $500,000  15 23 19 1 

IL  Bolingbrook 56,321 4/26/2007 0 0 $0  $0  17 0 0 0 

IL  Bolingbrook 56,321 8/4/2008 1 0 $500,000  $500,000  17 9 12 1 

IL  Cairo 3,632 5/6/2003 2 0 $300,000  $351,000  34 97 57 1 

IL  Caseyville 4,310 6/10/2003 2 0 $0  $0  29 0 0 0 

IL  Champaign 67,518 10/24/2001 1 0 $500,000  $610,000  22 9 14 1 

IL  Colfax 989 6/15/2008 0 0 $50,000  $50,000  21 51 32 1 

IL  Decatur 81,860 4/2/2006 1 0 $0  $0  27 0 0 0 

IL  Dongola 806 4/28/2002 3 1 $5,000,000  $12,950,000  32 16067 720 3 

IL  Dupo 3,933 6/10/2003 0 0 $0  $0  22 0 0 0 

IL  Fairview 
Heights 

15,034 4/2/2006 2 1 $0  $7,000,000  20 466 97 1 

IL  Forest City 287 5/30/2003 1 0 $0  $0  23 0 0 0 

IL  Galatia 1,013 4/28/2002 2 0 $3,500,000  $4,165,000  34 4112 372 2 

IL  Germantown 
Hills 

2,111 5/28/2003 1 0 $0  $0  14 0 0 0 

IL  Gillespie 3,412 5/13/2009 0 0 $0  $0  26 0 0 0 

IL  Glendale 
Heights 

31,765 8/4/2008 1 0 $0  $0  18 0 0 0 

IL  Granite City 31,301 4/10/2001 1 0 $5,000,000  $6,100,000  26 195 72 1 

IL  Grant Park 1,358 4/20/2004 0 0 $0  $0  17 0 0 0 

IL  Granville 1,414 4/20/2004 3 0 $4,000,000  $4,520,000  21 3197 260 2 

IL  Herscher 1,523 5/18/2000 0 0 $0  $0  18 0 0 0 

IL  Jacksonville 18,940 5/24/2004 2 0 $4,000,000  $4,520,000  26 239 79 1 

IL  Joliet 106,221 5/30/2003 1 0 $60,000  $70,200  22 1 4 1 

IL  Joliet 106,221 4/20/2004 1 0 $5,000,000  $5,650,000  22 53 34 1 
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IL  Lerna 322 6/6/2008 1 0 $0  $0  23 0 0 0 

IL  Lily Lake 825 8/19/2009 0 0 $0  $0  12 0 0 0 

IL  Lincoln 15,369 4/13/2006 0 0 $2,500,000  $2,675,000  26 174 67 1 

IL  Loami 804 8/19/2009 2 0 $100,000  $100,000  23 124 54 1 

IL  Manito 1,733 5/10/2003 2 0 $0  $0  21 0 0 0 

IL  Mark 491 4/20/2004 3 0 $0  $0  21 0 0 0 

IL  Monticello 5,138 10/24/2001 2 0 $2,200,000  $2,684,000  19 522 101 1 

IL  Murrayville 644 5/26/2000 1 0 $44,000  $54,560  23 85 44 1 

IL  North Utica 977 4/20/2004 3 8 $4,000,000  $60,520,000  20 61945 1110 4 

IL Oconee 202 6/20/2000 1 0 $0  $0  27 0 0 0 

IL  Pana 5,614 4/2/2006 1 0 $0  $0  31 0 0 0 

IL  Perry 437 9/30/2007 0 0 $0  $0  29 0 0 0 

IL  Peru 9,835 5/30/2003 0 0 $0  $0  23 0 0 0 

IL  Plainfield 13,038 4/26/2007 0 0 $100,000  $104,000  13 8 10 1 

IL  Pontoon 
Beach 

5,620 4/10/2001 1 0 $0  $0  26 0 0 0 

IL  Roanoke 1,994 5/30/2003 2 0 $0  $0  19 0 0 0 

IL  Rockton 5,296 5/30/2003 0 0 $0  $0  16 0 0 0 

IL  Rossville 1,217 7/26/2006 1 0 $40,000  $42,800  25 35 30 1 

IL  Shiloh 7,643 4/27/2002 1 0 $0  $0  17 0 0 0 

IL Shiloh 7,643 6/8/2009 2 0 $0  $0  17 0 0 0 

IL  South Pekin 1,162 5/10/2003 3 0 $5,500,000  $6,435,000  24 5538 368 2 

IL  Springerton 134 10/24/2001 0 0 $50,000  $61,000  29 455 115 1 

IL  Springfield 111,454 3/12/2006 2 0 $0  $0  23 0 0 0 

IL  Springfield 111,454 4/2/2006 1 0 $0  $0  23 0 0 0 

IL  Springfield 111,454 8/19/2009 1 0 $200,000  $200,000  23 2 6 1 

IL  Sugar Grove 3,909 5/28/2003 0 0 $0  $0  13 0 0 0 
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IL  Trenton 2,610 7/21/2006 0 0 $0  $0  19 0 0 0 

IL  Williamsville 1,439 8/19/2009 3 0 $11,000,000  $11,000,000  18 7644 371 2 

IL  Wilsonville 604 6/13/2005 1 0 $0  $0  25 0 0 0 

IL  Wilsonville 604 6/13/2005 1 0 $0  $0  25 0 0 0 

IL  Woodstock 20,151 6/19/2009 1 0 $75,000  $75,000  19 4 8 1 

IN Bedford 13,768 3/8/2009 0 0 $45,000  $45,000  27 3 9 1 

IN Bloomfield 2,542 2/5/2008 0 0 $0  $0  26 0 0 0 

IN Bloomfield 2,542 6/4/2008 1 0 $1,300,000  $1,300,000  26 511 116 1 

IN Boonville 6,834 11/6/2005 3 0 $0  $0  26 0 0 0 

IN Borden 818 5/27/2004 2 0 $1,000,000  $1,130,000  21 1381 169 1 

IN Brook 1,062 5/30/2004 0 0 $0  $0  27 0 0 0 

IN Burnettsville 373 5/31/2006 0 0 $0  $0  22 0 0 0 

IN Chesterton 10,488 8/19/2009 2 0 $1,500,000  $1,500,000  16 143 48 1 

IN Columbia City 7,077 3/8/2009 1 0 $500,000  $500,000  24 71 42 1 

IN Darmstadt 1,313 5/30/2004 0 0 $0  $0  13 0 0 0 

IN Darmstadt 1,313 5/10/2006 1 0 $1,200,000  $1,356,000  13 1033 115 1 

IN Decatur 9,528 8/28/2006 1 0 $0  $0  23 0 0 0 

IN Ellettsville 5,078 9/20/2002 3 0 $10,000,000  $11,900,000  25 2343 242 2 

IN Evansville 121,582 11/6/2005 3 20 $15,000,000  $156,350,000  27 1286 187 2 

IN Frankton 1,905 5/30/2004 0 0 $75,000  $84,750  22 44 31 1 

IN Georgetown 2,227 5/27/2004 1 0 $500,000  $565,000  17 254 66 1 

IN Greenwood 36,037 9/20/2002 3 0 $25,000,000  $29,750,000  20 826 127 1 

IN Hartford City 6,928 11/10/2002 1 0 $250,000  $297,500  28 43 35 1 

IN Holton 407 7/30/2004 2 0 $465,000  $525,450  31 1291 200 2 

IN Huntington 17,450 4/20/2004 0 0 $0  $0  24 0 0 0 

IN Indianapolis 781,870 9/20/2002 0 0 $0  $0  23 0 0 0 
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IN Indianapolis 781,870 5/30/2004 2 0 $19,000,000  $21,470,000  23 27 25 1 

IN Indianapolis 781,870 6/12/2005 3 0 $40,000,000  $47,600,000  23 61 37 1 

IN Lawrence 38,915 9/20/2002 3 0 $0  $0  21 0 0 0 

IN Marengo 829 5/30/2004 3 1 $5,000,000  $12,650,000  30 15259 679 3 

IN Martinsville 11,698 9/20/2002 3 0 $15,000,000  $17,850,000  25 1526 196 2 

IN McCordsville 1,134 9/20/2002 3 0 $2,000,000  $2,380,000  14 2099 170 1 

IN Muncie 67,430 9/20/2002 3 0 $3,000,000  $3,570,000  29 53 39 1 

IN Nappanee 6,710 10/18/2007 3 0 $11,000,000  $11,440,000  20 1705 186 2 

IN Newburgh 3,088 5/30/2004 2 0 $2,500,000  $2,825,000  19 915 133 1 

IN Newburgh 3,088 11/6/2005 3 4 $65,000,000  $98,850,000  19 32011 787 4 

IN Pendleton 3,873 9/20/2002 3 0 $8,000,000  $9,520,000  18 2458 209 2 

IN Peru 12,994 5/30/2004 3 0 $6,000,000  $6,780,000  28 522 122 1 

IN Richmond 39,124 6/21/2000 0 0 $45,000  $55,800  28 1 6 1 

IN South Bend 107,789 10/24/2001 3 1 $3,000,000  $10,660,000  29 99 53 1 

IN Tennyson 290 11/6/2005 3 0 $0  $0  27 0 0 0 

IN Terre Haute 59,614 2/16/2006 1 0 $1,500,000  $1,605,000  28 27 27 1 

KS Bird City 482 3/28/2007 0 0 $0  $0  26 0 0 0 

KS Chapman 1,241 6/11/2008 3 1 $20,000,000  $27,000,000  26 21757 757 4 

KS Colby 5,450 8/7/2006 1 0 $125,000  $133,750  24 25 24 1 

KS Elwood 1,145 6/4/2005 0 0 $0  $0  32 0 0 0 

KS Great Bend 15,345 7/8/2008 0 0 $0  $0  29 0 0 0 

KS Great Bend 15,345 6/20/2009 0 0 $75,000  $75,000  29 5 12 1 

KS Greensburg 1,574 5/4/2007 5 11 $250,000,000  $327,000,000  28 207751 2440 5 

KS Hoisington 2,975 4/21/2001 4 1 $43,000,000  $59,460,000  31 19987 790 4 

KS Leavenworth 35,420 5/4/2003 1 0 $1,000,000  $1,170,000  22 33 27 1 

KS Liberal 19,666 5/15/2003 2 0 $6,000,000  $7,020,000  27 357 97 1 
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KS Lyndon 1,038 5/8/2003 3 0 $1,000,000  $1,170,000  23 1127 162 1 

KS Manhattan 44,831 6/11/2008 4 0 $66,000,000  $66,000,000  22 1472 181 1 

KS Oketo 87 5/29/2004 0 0 $10,000  $11,300  24 130 55 1 

KS Protection 558 5/23/2008 1 0 $0  $0  28 0 0 0 

KS Russell 4,696 9/21/2006 1 0 $100,000  $107,000  30 23 26 1 

KS Salina 45,679 6/11/2008 3 0 $2,000,000  $2,000,000  25 44 33 1 

KS Stockton 1,558 6/9/2005 1 0 $300,000  $327,000  26 210 74 1 

KS Ulysses 5,960 10/26/2006 0 0 $0  $0  22 0 0 0 

KS WaKeeney 1,924 5/22/2008 1 0 $0  $0  27 0 0 0 

KY  Burkesville 1,756 11/9/2000 1 0 $150,000  $186,000  36 106 62 1 

KY  Clay 1,179 5/4/2003 2 0 $1,000,000  $1,170,000  25 992 158 1 

KY  Earlington 1,649 11/15/2005 4 0 $31,000,000  $33,790,000  36 20491 858 4 

KY  Eubank 358 4/10/2009 0 0 $40,000  $40,000  28 112 56 1 

KY  Eubank 358 4/10/2009 1 0 $100,000  $100,000  28 279 89 1 

KY  Hanson 625 6/1/2004 0 0 $0  $0  26 0 0 0 

KY  Hardinsburg 2,345 6/12/2004 0 0 $100,000  $113,000  28 48 37 1 

KY  Harrodsburg 8,014 2/6/2008 1 0 $1,000,000  $1,000,000  29 125 61 1 

KY  Hendron 4,239 5/6/2003 1 0 $0  $0  20 0 0 0 

KY  Hillview 7,037 10/18/2007 1 0 $35,000  $36,400  21 5 10 1 

KY  Hopkinsville 30,089 8/4/2009 0 0 $35,000  $35,000  29 1 6 1 

KY  Lexington-
Fayette 
County 

260,512 5/27/2004 3 0 $7,500,000  $8,475,000  20 33 25 1 

KY  Louisville 256,231 1/2/2006 1 0 $250,000  $267,500  28 1 5 1 

KY  Munfordville 1,563 5/11/2003 1 0 $100,000  $117,000  34 75 50 1 

KY  Munfordville 1,563 11/6/2005 2 0 $2,100,000  $2,289,000  34 1464 222 2 

KY  Owensboro 54,067 1/3/2000 3 0 $11,500,000  $11,960,000  27 221 78 1 

KY  Owensboro 54,067 10/18/2007 3 0 $64,000,000  $79,360,000  27 1468 201 2 
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KY  Whitesville 632 9/22/2006 1 0 $75,000  $80,250  32 127 64 1 

LA  Alexandria 46,342 12/9/2008 1 0 $300,000  $300,000  31 6 14 1 

LA  Blanchard 2,050 10/29/2009 0 0 $0  $0  18 0 0 0 

LA  Breaux Bridge 7,281 5/15/2008 1 0 $1,000,000  $1,000,000  31 137 65 1 

LA  Cheneyville 901 9/3/2008 1 0 $40,000  $40,000  34 44 39 1 

LA  Dodson 357 5/3/2009 2 0 $3,000,000  $3,000,000  31 8403 508 3 

LA  Eastwood 3,374 10/29/2009 1 0 $1,000,000  $1,000,000  21 296 80 1 

LA  Elton 1,261 10/22/2009 1 0 $600,000  $600,000  35 476 130 1 

LA  Estelle 15,880 3/19/2008 1 0 $200,000  $200,000  23 13 17 1 

LA  Fisher 268 3/30/2008 0 0 $15,000  $15,000  29 56 40 1 

LA  Golden 
Meadow 

2,193 9/25/2002 1 0 $0  $0  28 0 0 0 

LA  Goldonna 457 5/10/2009 0 0 $0  $0  26 0 0 0 

LA  Iowa 2,663 12/30/2002 1 0 $7,000,000  $8,330,000  28 3128 296 2 

LA  Jonesboro 3,914 3/24/2009 1 0 $500,000  $500,000  35 128 67 1 

LA  Jonesville 2,469 2/24/2007 2 0 $400,000  $416,000  36 168 77 1 

LA  Kenner 70,517 2/2/2006 1 0 $750,000  $802,500  24 11 17 1 

LA  Lafayette 110,257 5/15/2008 0 0 $50,000  $50,000  23 0 3 1 

LA  Lafayette 110,257 5/15/2008 1 0 $3,000,000  $3,000,000  23 27 25 1 

LA  Lake 
Providence 

5,104 6/18/2007 1 0 $700,000  $728,000  36 143 71 1 

LA  Mansfield 5,582 4/23/2000 2 0 $0  $0  36 0 0 0 

LA  Metairie 146,136 5/16/2009 0 0 $15,000  $15,000  21 0 1 1 

LA  Morse 759 10/16/2006 0 0 $0  $0  30 0 0 0 

LA  Natchez 583 11/23/2004 0 0 $30,000  $33,900  33 58 44 1 

LA  New Iberia 32,623 8/8/2008 0 0 $200,000  $200,000  33 6 14 1 

LA  New Orleans 484,674 2/13/2007 2 1 $1,000,000  $8,040,000  29 17 22 1 

LA  Olla 1,417 11/23/2004 3 1 $5,000,000  $12,650,000  31 8927 525 3 
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LA  Sicily Island 453 11/8/2000 2 0 $15,000  $18,600  35 41 38 1 

LA  Slidell 25,695 11/24/2004 2 0 $750,000  $847,500  23 33 28 1 

LA  Westwego 10,763 12/15/2009 0 0 $3,000  $3,000  33 0 3 1 

MA  Franklin 29,560 8/21/2004 1 0 $1,500,000  $1,695,000  14 57 29 1 

MA  Ocean Grove 3,012 7/23/2008 0 0 $0  $0  20 0 0 0 

MD Charlotte Hall 1,214 5/7/2003 0 0 $25,000  $29,250  20 24 22 1 

MD Chesapeake 
Beach 

3,180 6/4/2008 0 0 $400,000  $400,000  17 126 46 1 

MD Chillum 34,252 4/20/2008 1 0 $40,000  $40,000  26 1 5 1 

MD Dundalk 62,306 6/9/2009 0 0 $0  $0  25 0 0 0 

MD Essex 39,078 6/20/2009 1 0 $0  $0  26 0 0 0 

MD Frederick 52,767 6/6/2002 0 0 $15,000  $17,850  21 0 3 1 

MD Maryland City 6,814 6/21/2000 1 0 $0  $0  19 0 0 0 

MD Maryland City 6,814 7/10/2000 1 0 $0  $0  19 0 0 0 

MD Olney 31,438 5/27/2001 1 0 $500,000  $610,000  16 19 17 1 

MD Pleasant Hills 2,851 7/16/2007 0 0 $0  $0  16 0 0 0 

MD Pleasant Hills 2,851 6/20/2009 1 0 $10,000  $10,400  16 4 8 1 

MD Poolesville 5,151 9/17/2004 1 0 $0  $0  14 0 0 0 

MD Preston 566 6/4/2008 0 0 $300,000  $300,000  18 530 98 1 

MD Severna Park 28,507 9/28/2006 1 0 $6,000,000  $6,420,000  14 225 56 1 

MD St. Charles 33,379 4/20/2008 0 0 $50,000  $50,000  21 2 6 1 

MD White Oak 20,973 6/4/2008 0 0 $400,000  $400,000  21 19 20 1 

ME Presque Isle 9,511 5/31/2009 1 0 $0  $0  26 0 0 0 

MI  Iron Mountain 8,154 9/30/2002 1 0 $7,000,000  $8,330,000  23 1022 154 1 

MI  Lansing 119,128 8/24/2007 1 0 $300,000  $312,000  27 3 8 1 

MI  Norway 2,959 9/30/2002 0 0 $0  $0  25 0 0 0 

MI  Paw Paw 3,363 9/13/2008 1 0 $0  $0  22 0 0 0 
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MN Austin 23,314 6/17/2009 2 0 $2,000,000  $2,000,000  26 86 47 1 

MN Benson 3,376 6/11/2001 2 0 $10,000,000  $12,200,000  27 3614 310 2 

MN Big Lake 6,063 5/9/2004 0 0 $0  $0  18 0 0 0 

MN Blaine 44,942 5/25/2008 1 0 $700,000  $700,000  17 16 16 1 

MN Brainerd 13,178 6/13/2001 2 0 $0  $0  30 0 0 0 

MN Buffalo Lake 768 6/24/2003 2 0 $15,000,000  $17,550,000  26 22852 773 4 

MN Clear Lake 266 5/30/2004 0 0 $0  $0  19 0 0 0 

MN Coon Rapids 61,607 9/21/2005 1 0 $700,000  $700,000  18 11 14 1 

MN Coon Rapids 61,607 5/25/2008 2 0 $5,000,000  $5,450,000  18 88 40 1 

MN Cottage Grove 30,582 8/19/2009 1 0 $100,000  $100,000  15 3 7 1 

MN Dent 192 6/18/2009 1 0 $0  $0  30 0 0 0 

MN Fergus Falls 13,471 6/14/2008 1 0 $100,000  $100,000  25 7 14 1 

MN Geneva 449 6/17/2009 0 0 $1,000  $1,000  20 2 7 1 

MN Glenville 720 5/1/2001 2 0 $20,000,000  $24,400,000  22 33889 871 4 

MN Granite Falls 3,070 7/25/2000 4 1 $20,000,000  $31,800,000  27 10358 526 3 

MN Hugo 6,363 5/25/2008 3 1 $25,000,000  $32,000,000  14 5029 268 2 

MN Lancaster 363 5/29/2002 0 0 $0  $0  23 0 0 0 

MN Lino Lakes 16,791 5/25/2008 3 0 $300,000  $300,000  13 18 15 1 

MN Marine on St. 
Croix 

602 5/25/2008 0 0 $25,000  $25,000  12 42 22 1 

MN Marine on St. 
Croix 

602 5/25/2008 0 0 $300,000  $300,000  12 498 77 1 

MN Marine on St. 
Croix 

602 8/19/2009 0 0 $300,000  $300,000  12 498 77 1 

MN Minneapolis 382,618 8/19/2009 0 0 $500,000  $500,000  21 1 5 1 

MN Nielsville 91 8/29/2004 0 0 $1,000  $1,130  26 12 18 1 

MN North Branch 8,023 8/19/2009 0 0 $100,000  $100,000  17 12 15 1 

MN Northfield 17,147 5/9/2001 2 0 $9,000,000  $10,980,000  17 640 105 1 

MN Ottertail 451 6/20/2005 2 0 $0  $0  20 0 0 0 
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MN Rogers 3,588 9/16/2006 2 1 $30,000,000  $39,100,000  12 10897 367 2 

MN Spicer 1,126 7/14/2009 1 0 $250,000  $250,000  22 222 69 1 

MN Warroad 1,722 8/5/2006 3 0 $20,000,000  $21,400,000  21 12427 515 3 

MO Amsterdam 281 3/12/2006 0 0 $400,000  $428,000  25 1523 194 2 

MO Berkeley 10,063 5/30/2004 1 1 $100,000  $7,113,000  31 707 149 1 

MO Bismarck 1,470 5/14/2009 1 0 $0  $0  32 0 0 0 

MO Branson 6,050 3/11/2006 0 0 $0  $0  25 0 0 0 

MO Buffalo 2,781 3/31/2008 2 0 $1,000,000  $1,000,000  33 360 109 1 

MO Chain-O-
Lakes 

127 9/2/2008 0 0 $5,000  $5,000  24 39 31 1 

MO Charleston 4,732 4/20/2002 1 0 $68,000  $80,920  35 17 24 1 

MO Desloge 4,802 5/12/2002 1 0 $0  $0  27 0 0 0 

MO Dexter 7,356 3/9/2006 1 0 $900,000  $963,000  32 131 65 1 

MO Ellsinore 363 4/24/2002 4 0 $45,000,000  $53,550,000  33 147521 2214 5 

MO Excelsior 
Estates 

263 11/27/2005 1 0 $0  $0  30 0 0 0 

MO Excelsior 
Springs 

10,847 11/27/2005 1 0 $1,200,000  $1,308,000  25 121 54 1 

MO Fulton 12,128 4/10/2001 1 1 $75,000  $7,091,500  22 585 113 1 

MO Gladstone 26,365 5/2/2008 2 0 $10,000,000  $10,000,000  20 379 86 1 

MO Highlandville 872 1/8/2008 1 0 $250,000  $250,000  26 287 86 1 

MO Jackson 11,947 5/6/2003 3 0 $12,000,000  $14,040,000  21 1175 159 1 

MO Joplin 45,504 6/30/2005 0 0 $0  $0  27 0 0 0 

MO Kansas City 441,545 5/11/2000 3 0 $4,000,000  $4,000,000  24 9 15 1 

MO Kansas City 441,545 5/4/2003 1 0 $5,000,000  $6,200,000  24 14 18 1 

MO Kansas City 441,545 5/2/2008 4 0 $31,000,000  $36,270,000  24 82 45 1 

MO Kirksville 16,988 5/13/2009 2 2 $5,000,000  $19,000,000  28 1118 175 1 

MO Lebanon 12,155 3/31/2008 2 0 $500,000  $500,000  29 41 34 1 

MO Liberty 26,232 5/4/2003 2 0 $60,000,000  $70,200,000  18 2676 221 2 
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MO Monroe City 2,588 5/10/2003 0 0 $0  $0  30 0 0 0 

MO Neosho 10,505 3/31/2008 0 0 $100,000  $100,000  28 10 16 1 

MO Nixa 12,124 4/9/2009 0 0 $100,000  $100,000  23 8 14 1 

MO North 
Lilbourn 

95 11/15/2005 1 0 $60,000  $65,400  35 688 155 1 

MO Palmyra 3,467 10/2/2007 0 0 $50,000  $52,000  27 15 20 1 

MO Redings Mill 159 4/15/2001 1 0 $2,000,000  $2,440,000  25 15346 616 3 

MO Republic 8,438 1/7/2008 1 0 $1,000,000  $1,000,000  25 119 54 1 

MO Republic 8,438 5/8/2009 2 0 $2,000,000  $2,000,000  25 237 77 1 

MO Roscoe 112 5/26/2004 2 0 $500,000  $565,000  24 5045 348 2 

MO Schell City 286 6/2/2008 0 0 $150,000  $150,000  33 524 131 1 

MO Sedalia 20,339 5/6/2003 0 0 $0  $0  31 0 0 0 

MO Springfield 151,580 1/8/2008 1 0 $50,000  $50,000  26 0 3 1 

MO Springfield 151,580 6/19/2008 1 0 $150,000  $150,000  26 1 5 1 

MO Springfield 151,580 2/10/2009 1 0 $200,000  $200,000  26 1 6 1 

MO Springfield 151,580 5/8/2009 1 0 $350,000  $350,000  26 2 8 1 

MO St. James 3,704 9/22/2006 1 0 $1,500,000  $1,605,000  31 433 116 1 

MO St. Louis 348,189 3/31/2007 0 0 $0  $0  30 0 0 0 

MO Van Buren 845 4/24/2002 4 0 $1,000,000  $1,190,000  33 1408 217 2 

MO Warrensburg 16,340 4/10/2001 1 0 $2,000,000  $2,440,000  25 149 61 1 

MS Abbeville 423 5/8/2008 0 0 $25,000  $25,000  22 59 36 1 

MS Bay St. Louis 8,209 8/12/2003 0 0 $0  $0  26 0 0 0 

MS Benoit 611 10/9/2009 0 0 $45,000  $45,000  35 74 51 1 

MS Brandon 16,436 4/24/2003 3 0 $50,000,000  $58,500,000  18 3559 256 2 

MS Byram 7,386 3/16/2002 1 0 $1,400,000  $1,666,000  17 226 63 1 

MS Caledonia 1,015 1/10/2008 3 0 $7,000,000  $7,000,000  22 6897 391 2 

MS Carthage 4,637 9/25/2005 1 0 $200,000  $218,000  30 47 37 1 
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MS Columbus 25,944 11/10/2002 3 0 $60,000,000  $71,400,000  29 2752 283 2 

MS Greenville 41,633 9/24/2005 2 0 $680,000  $741,200  32 18 24 1 

MS Hattiesburg 44,779 10/17/2006 2 0 $700,000  $749,000  30 17 22 1 

MS Indianola 12,066 2/24/2007 1 0 $650,000  $676,000  32 56 43 1 

MS Isola 768 11/24/2001 3 0 $4,000,000  $4,880,000  34 6354 465 3 

MS Itta Bena 2,208 9/24/2005 1 0 $200,000  $218,000  34 99 58 1 

MS Jackson 184,256 9/25/2005 0 0 $0  $0  29 0 0 0 

MS Lake 408 3/3/2008 1 0 $1,200,000  $1,200,000  31 2941 304 2 

MS Laurel 18,393 3/15/2002 1 0 $3,300,000  $3,927,000  33 214 84 1 

MS Madison 14,692 11/24/2001 4 2 $12,000,000  $28,640,000  15 1949 171 1 

MS Magee 4,200 11/18/2003 1 0 $200,000  $234,000  32 56 42 1 

MS Magee 4,200 3/26/2009 3 0 $5,000,000  $5,000,000  32 1190 195 2 

MS Marion 1,305 12/16/2000 2 0 $2,100,000  $2,604,000  34 1995 262 2 

MS Moorhead 2,573 10/22/2007 1 0 $180,000  $187,200  35 73 50 1 

MS Mount Olive 893 4/6/2005 0 0 $5,000  $5,450  35 6 15 1 

MS Natchez 18,464 12/9/2008 1 0 $2,500,000  $2,500,000  32 135 66 1 

MS New Hope 1,964 11/10/2002 1 0 $15,000  $17,850  17 9 12 1 

MS Newton 3,699 12/19/2002 2 0 $1,000,000  $1,090,000  32 295 98 1 

MS Newton 3,699 9/24/2005 2 0 $1,000,000  $1,190,000  32 322 102 1 

MS Olive Branch 21,054 6/12/2009 2 0 $4,000,000  $4,000,000  17 190 57 1 

MS Olive Branch 21,054 7/30/2009 2 0 $6,000,000  $6,000,000  17 285 70 1 

MS Pachuta 245 4/6/2005 1 0 $40,000  $43,600  32 178 76 1 

MS Pearl 21,961 2/12/2008 1 0 $1,000,000  $1,000,000  26 46 34 1 

MS Philadelphia 7,303 8/29/2005 1 0 $15,000  $16,350  33 2 9 1 

MS Picayune 10,535 4/7/2003 1 0 $100,000  $117,000  31 11 18 1 

MS Sardis 2,038 3/9/2006 1 0 $500,000  $535,000  34 263 94 1 



 197 

State Community Population Date EFS Deaths Damage Damage 
Component 

Vulnerability 
Score 

Damage 
Score 

TICV TC 

MS Starkville 21,869 9/25/2005 1 0 $2,000,000  $2,180,000  24 100 49 1 

MS Tupelo 34,211 5/8/2008 3 0 $1,500,000  $1,500,000  23 44 32 1 

MS West 
Hattiesburg 

6,305 12/10/2008 1 0 $700,000  $700,000  25 111 52 1 

NC Apex 20,212 9/27/2004 0 0 $0  $0  15 0 0 0 

NC Aulander 888 9/26/2008 0 0 $75,000  $75,000  32 84 52 1 

NC Charlotte 540,828 3/8/2005 1 0 $50,000  $54,500  20 0 1 1 

NC Clayton 6,973 9/14/2007 0 0 $0  $0  22 0 0 0 

NC Greenville 60,476 3/27/2009 1 0 $50,000  $50,000  24 1 5 1 

NC Jacksonville 66,715 5/7/2009 0 0 $0  $0  24 0 0 0 

NC Lillington 2,915 9/14/2007 0 0 $0  $0  25 0 0 0 

NC Lincolnton 9,965 10/16/2003 1 0 $50,000  $58,500  28 6 13 1 

NC Morehead City 7,691 5/11/2008 1 0 $30,000  $30,000  29 4 11 1 

NC Mount Holly 9,618 7/12/2003 1 0 $2,000,000  $2,340,000  23 243 74 1 

NC Plain View 1,820 3/27/2009 0 0 $0  $0  25 0 0 0 

NC River Road 4,094 7/17/2009 0 0 $0  $0  24 0 0 0 

NC Vanceboro 898 5/7/2009 0 0 $0  $0  29 0 0 0 

NC Watha 151 5/27/2003 0 0 $0  $0  23 0 0 0 

NC Whiteville 5,148 4/17/2006 1 0 $10,000  $10,700  29 2 8 1 

ND Belcourt 2,440 7/7/2008 3 0 $0  $0  32 0 0 0 

ND Belfield 866 6/6/2005 1 0 $0  $0  31 0 0 0 

ND Cannon Ball 864 6/26/2005 0 0 $0  $0  33 0 0 0 

ND Cannon Ball 864 6/26/2005 0 0 $0  $0  33 0 0 0 

ND Crosby 1,089 7/18/2003 1 0 $0  $0  29 0 0 0 

ND Crosby 1,089 6/11/2007 0 0 $75,000  $78,000  29 72 45 1 

ND Dickinson 16,010 7/8/2009 3 0 $20,000,000  $20,000,000  25 1249 178 1 

ND Enderlin 947 6/17/2007 0 0 $0  $0  23 0 0 0 
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ND Grand Forks 49,321 5/20/2005 1 0 $0  $0  22 0 0 0 

ND Horace 915 7/10/2004 0 0 $0  $0  21 0 0 0 

ND Mohall 812 6/6/2004 0 0 $0  $0  26 0 0 0 

ND Mooreton 204 6/18/2009 1 0 $0  $0  23 0 0 0 

ND Northwood 959 8/26/2007 4 1 $50,000,000  $59,000,000  24 61522 1226 4 

ND Pembina 642 7/14/2003 0 0 $0  $0  17 0 0 0 

ND Rolla 1,417 7/7/2008 3 0 $1,000,000  $1,000,000  29 706 143 1 

ND Sawyer 377 6/12/2007 0 0 $0  $0  25 0 0 0 

ND Tower City 252 7/15/2007 1 0 $1,000,000  $1,040,000  23 4127 311 2 

ND Walhalla 1,057 6/23/2005 1 0 $0  $0  26 0 0 0 

NE Cody 149 6/21/2007 1 0 $75,000  $78,000  28 523 120 1 

NE Fremont 25,174 5/22/2004 1 0 $0  $0  25 0 0 0 

NE Gibbon 1,759 5/7/2005 0 0 $25,000  $27,250  27 15 21 1 

NE Grand Island 42,940 6/17/2009 0 0 $5,000  $5,000  26 0 2 1 

NE Hadar 312 5/21/2004 1 0 $0  $0  18 0 0 0 

NE Hallam 276 5/22/2004 4 1 $100,000,000  $120,000,000  17 434783 2743 5 

NE Hastings 24,064 8/22/2007 0 0 $20,000  $20,800  25 1 5 1 

NE Jackson 205 8/17/2001 2 0 $3,000,000  $3,660,000  19 17854 590 3 

NE Kearney 27,431 5/29/2008 1 0 $100,000  $100,000  24 4 9 1 

NE Kearney 27,431 5/29/2008 2 0 $11,000,000  $11,000,000  24 401 97 1 

NE Louisville 1,046 6/11/2008 1 0 $0  $0  19 0 0 0 

NE Omaha 390,007 6/8/2008 2 0 $0  $0  22 0 0 0 

NE Omaha 390,007 6/8/2008 2 0 $0  $0  22 0 0 0 

NE Shelton 1,140 5/29/2008 1 0 $0  $0  26 0 0 0 

NE Surprise 44 9/15/2006 2 0 $0  $0  30 0 0 0 

NE Ulysses 276 6/4/2008 1 0 $0  $0  26 0 0 0 
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NJ Florence-
Roebling 

8,200 9/23/2003 1 0 $600,000  $702,000  20 86 42 1 

NJ Trenton 85,403 9/23/2003 1 0 $1,000,000  $1,170,000  31 14 21 1 

NM Cedar Grove 599 7/18/2009 0 0 $0  $0  22 0 0 0 

NM Logan 1,094 3/23/2007 1 0 $3,500,000  $3,640,000  29 3327 313 2 

NY Hilton 5,856 7/25/2009 0 0 $75,000  $75,000  20 13 16 1 

NY Unionville 536 7/29/2009 0 0 $75,000  $75,000  25 140 59 1 

OH Bethel 2,637 5/30/2009 0 0 $0  $0  28 0 0 0 

OH Brewster 2,324 6/22/2006 1 0 $450,000  $481,500  23 207 70 1 

OH Carlisle 5,121 7/11/2006 1 0 $200,000  $214,000  19 42 28 1 

OH Circleville 13,485 6/2/2001 0 0 $50,000  $61,000  25 5 11 1 

OH Fostoria 13,931 11/10/2002 2 0 $11,000,000  $13,090,000  29 940 166 1 

OH Jamestown 1,917 5/8/2008 0 0 $1,000  $1,000  25 1 4 1 

OH Macedonia 9,224 11/10/2002 2 0 $5,000,000  $5,950,000  14 645 95 1 

OH New 
Philadelphia 

17,056 11/12/2003 2 0 $160,000  $187,200  25 11 16 1 

OH Polk 357 11/10/2002 2 0 $1,600,000  $1,904,000  20 5333 330 2 

OH Tiffin 18,135 11/10/2002 3 1 $12,800,000  $22,232,000  26 1226 178 1 

OH Twinsburg 17,006 11/10/2002 2 0 $5,000,000  $5,950,000  16 350 75 1 

OH Van Wert 10,690 9/20/2002 0 0 $0  $0  26 0 0 0 

OH Waynesburg 1,003 6/22/2006 1 0 $500,000  $535,000  27 533 119 1 

OH Wilmington 11,921 5/24/2001 0 0 $5,000  $6,100  25 1 4 1 

OH Xenia 24,164 9/20/2000 4 1 $15,000,000  $25,600,000  27 1059 168 1 

OK Agra 356 6/9/2004 1 0 $200,000  $226,000  30 635 137 1 

OK Anadarko 6,645 5/13/2009 2 0 $50,000,000  $50,000,000  35 7524 511 3 

OK Atoka 2,988 4/16/2002 1 0 $30,000  $35,700  35 12 20 1 

OK Bethany 20,307 5/9/2003 1 0 $10,000,000  $11,700,000  26 576 122 1 

OK Broken Arrow 74,859 4/22/2004 0 0 $0  $0  18 0 0 0 
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OK Broken Bow 4,230 5/1/2003 2 0 $260,000  $304,200  36 72 51 1 

OK Choctaw 9,377 4/15/2003 1 0 $125,000  $146,250  19 16 17 1 

OK Coweta 7,139 5/13/2004 1 0 $100,000  $113,000  26 16 20 1 

OK Del City 22,128 5/8/2003 4 0 $160,000,000  $187,200,000  29 8460 498 3 

OK Edmond 68,315 2/10/2009 2 0 $0  $0  17 0 0 0 

OK El Reno 16,212 4/24/2006 1 0 $1,500,000  $1,605,000  26 99 51 1 

OK El Reno 16,212 5/8/2007 1 0 $3,000,000  $3,120,000  26 192 71 1 

OK Enid 47,045 4/25/2009 2 0 $0  $0  27 0 0 0 

OK Goldsby 1,204 5/7/2008 0 0 $15,000  $15,000  18 12 15 1 

OK Helena 443 9/7/2001 0 0 $0  $0  31 0 0 0 

OK Henryetta 6,096 5/16/2003 1 0 $100,000  $117,000  35 19 26 1 

OK Jones 2,517 11/10/2004 1 0 $1,000,000  $1,130,000  26 449 107 1 

OK Lone Grove 4,631 2/10/2009 4 8 $3,000,000  $59,000,000  28 12740 596 3 

OK McAlester 17,783 5/10/2008 0 0 $0  $0  28 0 0 0 

OK Minco 1,672 8/19/2007 1 0 $45,000  $46,800  25 28 26 1 

OK Moore 41,138 5/8/2003 4 0 $210,000,000  $245,700,000  23 5973 368 2 

OK New Cordell 2,867 10/9/2001 3 0 $100,000,000  $122,000,000  29 42553 1117 4 

OK Noble 5,260 5/7/2008 0 0 $10,000  $10,000  26 2 7 1 

OK Norman 95,694 6/12/2009 1 0 $0  $0  20 0 0 0 

OK North Enid 796 4/25/2009 2 0 $0  $0  19 0 0 0 

OK Oklahoma 
City 

506,132 10/22/2000 0 0 $0  $0  24 0 0 0 

OK Oklahoma 
City 

506,132 10/22/2000 0 0 $10,000  $12,000  24 0 1 1 

OK Oklahoma 
City 

506,132 5/8/2003 0 0 $25,000  $26,000  24 0 1 1 

OK Oklahoma 
City 

506,132 5/9/2003 0 0 $50,000  $50,000  24 0 2 1 

OK Oklahoma 
City 

506,132 3/29/2007 1 0 $120,000  $148,800  24 0 3 1 
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OK Oklahoma 
City 

506,132 5/7/2008 2 0 $500,000  $585,000  24 1 5 1 

OK Oklahoma 
City 

506,132 2/10/2009 1 0 $1,000,000  $1,000,000  24 2 7 1 

OK Oklahoma 
City 

506,132 5/13/2009 3 0 $7,000,000  $8,190,000  24 16 20 1 

OK Tulsa 393,049 4/1/2006 1 0 $250,000  $267,500  24 1 4 1 

OK Tyrone 880 5/15/2003 0 0 $0  $0  28 0 0 0 

OK Union City 1,375 8/19/2007 1 0 $5,000  $5,200  19 4 8 1 

OK Warr Acres 9,735 5/9/2003 1 0 $20,000  $23,400  26 2 8 1 

PA Allentown 106,632 9/6/2008 1 0 $1,500,000  $1,500,000  29 14 20 1 

PA Clark 633 11/10/2002 2 1 $1,000,000  $8,190,000  16 12938 450 3 

PA Greensburg 15,889 12/1/2006 1 0 $75,000  $80,250  27 5 12 1 

PA Hermitage 16,157 4/28/2002 0 0 $150,000  $178,500  21 11 15 1 

PA Mountain Top 15,269 12/1/2006 2 0 $1,000,000  $1,070,000  16 70 34 1 

PA New Lebanon 205 7/21/2003 0 0 $15,000  $17,550  21 86 42 1 

PA Pittsburgh 334,563 8/9/2007 0 0 $100,000  $104,000  27 0 3 1 

PA Schlusser 4,750 6/21/2000 0 0 $0  $0  18 0 0 0 

SC Abbeville 5,840 4/10/2009 2 0 $1,000,000  $1,000,000  32 171 74 1 

SC Aiken 25,337 2/14/2000 0 0 $0  $0  22 0 0 0 

SC Allendale 4,052 3/15/2008 2 0 $2,000,000  $2,000,000  36 494 132 1 

SC Awendaw 1,195 6/13/2006 0 0 $1,000  $1,070  26 1 5 1 

SC Aynor 587 3/15/2008 0 0 $0  $0  27 0 0 0 

SC Beaufort 12,950 6/12/2001 0 0 $0  $0  19 0 0 0 

SC Bishopville 3,670 9/27/2004 0 0 $0  $0  34 0 0 0 

SC Charleston 96,650 4/8/2006 0 0 $0  $0  22 0 0 0 

SC Charleston 96,650 4/8/2006 0 0 $0  $0  22 0 0 0 

SC Cheraw 5,524 9/7/2004 1 0 $0  $0  33 0 0 0 

SC Clemson 11,939 8/26/2008 1 0 $0  $0  21 0 0 0 
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SC Columbia 116,278 9/7/2004 0 0 $0  $0  22 0 0 0 

SC Conway 11,788 8/12/2004 0 0 $0  $0  27 0 0 0 

SC Denmark 3,328 3/15/2008 1 0 $0  $0  35 0 0 0 

SC Ehrhardt 614 9/7/2004 0 0 $0  $0  30 0 0 0 

SC Florence 30,248 5/14/2006 2 0 $1,300,000  $1,391,000  26 46 35 1 

SC Greenwood 22,071 4/10/2009 1 0 $200,000  $200,000  32 9 17 1 

SC Greenwood 22,071 4/10/2009 1 0 $300,000  $300,000  32 14 21 1 

SC Hampton 2,837 6/12/2001 1 0 $0  $0  28 0 0 0 

SC Hampton 2,837 7/1/2003 1 0 $0  $0  28 0 0 0 

SC Hanahan 12,937 9/28/2002 0 0 $0  $0  18 0 0 0 

SC Hanahan 12,937 6/27/2009 0 0 $150,000  $150,000  18 12 15 1 

SC Hardeeville 1,793 9/6/2004 1 0 $0  $0  32 0 0 0 

SC Laurens 9,916 1/13/2005 2 0 $2,000,000  $2,180,000  32 220 84 1 

SC Meggett 1,230 4/8/2006 1 0 $0  $0  17 0 0 0 

SC New Ellenton 2,250 3/4/2008 0 0 $0  $0  25 0 0 0 

SC North Augusta 17,574 9/25/2000 0 0 $0  $0  22 0 0 0 

SC Parris Island 4,841 6/12/2001 0 0 $0  $0  16 0 0 0 

SC Parris Island 4,841 6/15/2004 0 0 $0  $0  16 0 0 0 

SC Piedmont 4,684 11/11/2002 0 0 $0  $0  25 0 0 0 

SC Ravenel 2,214 5/14/2006 1 0 $0  $0  26 0 0 0 

SC Rembert 406 3/16/2000 0 0 $0  $0  34 0 0 0 

SC Simpsonville 14,352 11/11/2002 1 0 $250,000  $297,500  20 21 20 1 

SC Society Hill 700 9/7/2004 0 0 $10,000  $11,300  30 16 22 1 

SC Summerville 27,752 5/6/2003 1 0 $0  $0  22 0 0 0 

SC Sumter 39,643 9/7/2004 1 0 $0  $0  27 0 0 0 

SC Sumter 39,643 9/7/2004 2 0 $1,700,000  $1,921,000  27 48 36 1 
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SC Tega Cay 4,044 9/7/2004 1 0 $5,000  $5,650  13 1 4 1 

SC Willington 177 11/11/2002 0 0 $0  $0  27 0 0 0 

SC Willington 177 3/15/2008 1 0 $0  $0  27 0 0 0 

SD Baltic 811 6/5/2008 2 0 $0  $0  20 0 0 0 

SD Bridgewater 607 9/16/2006 2 0 $0  $0  28 0 0 0 

SD Brookings 18,504 9/16/2006 0 0 $0  $0  21 0 0 0 

SD Herrick 105 8/9/2002 2 0 $1,000,000  $1,190,000  29 11333 578 3 

SD Parker 1,031 6/24/2003 2 0 $3,000,000  $3,510,000  25 3404 292 2 

SD Tripp 711 5/5/2007 0 0 $0  $0  32 0 0 0 

SD Viborg 832 6/24/2003 0 0 $0  $0  25 0 0 0 

SD Viborg 832 6/24/2009 1 0 $1,000,000  $1,170,000  25 1406 188 2 

TN Alcoa 7,734 6/2/2001 0 0 $200,000  $244,000  24 32 28 1 

TN Bartlett 40,543 6/12/2009 1 0 $25,000  $25,000  16 1 3 1 

TN Bradford 1,113 4/2/2006 3 6 $25,000,000  $68,750,000  27 61770 1301 4 

TN Brownsville 10,748 4/2/2006 2 0 $400,000  $428,000  32 40 36 1 

TN Clarksville 103,455 11/15/2005 2 0 $0  $0  24 0 0 0 

TN Clarksville 103,455 5/2/2008 1 0 $500,000  $500,000  24 5 11 1 

TN Collinwood 1,024 11/15/2005 2 0 $100,000  $109,000  29 106 55 1 

TN Cookeville 23,923 3/19/2003 1 1 $100,000  $7,117,000  23 298 83 1 

TN Crab Orchard 838 11/10/2002 1 0 $0  $0  27 0 0 0 

TN Crossville 8,981 4/7/2006 1 0 $4,000,000  $4,280,000  28 477 115 1 

TN Dyersburg 17,452 5/4/2003 0 0 $10,000  $11,700  29 1 4 1 

TN Dyersburg 17,452 5/4/2003 1 0 $1,000,000  $1,130,000  29 65 43 1 

TN Dyersburg 17,452 10/18/2004 2 0 $50,000,000  $58,500,000  29 3352 312 2 

TN Eastview 618 2/5/2008 1 0 $250,000  $250,000  26 405 110 1 

TN Fayetteville 6,994 10/9/2009 1 0 $30,000  $30,000  30 4 11 1 
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TN Gallatin 23,230 4/7/2006 3 7 $69,000,000  $122,830,000  25 5288 365 2 

TN Goodlettsville 13,780 4/7/2006 3 0 $10,000,000  $10,700,000  20 776 124 1 

TN Jackson 59,643 11/10/2002 1 0 $50,000  $53,500  26 1 5 1 

TN Jackson 59,643 5/4/2003 1 0 $3,000,000  $3,570,000  26 60 39 1 

TN Jackson 59,643 9/22/2006 4 11 $30,000,000  $100,000,000  26 1677 209 2 

TN Jackson 59,643 2/5/2008 4 0 $100,000,000  $112,100,000  26 1880 221 2 

TN Kimball 1,312 11/14/2007 2 0 $2,500,000  $2,600,000  22 1982 207 2 

TN Lake Tansi 2,621 11/10/2002 3 4 $500,000  $28,595,000  27 10910 547 3 

TN Lynchburg 5,740 5/31/2004 1 0 $0  $0  21 0 0 0 

TN Lynchburg 5,740 8/20/2004 0 0 $0  $0  21 0 0 0 

TN Memphis 650,100 2/5/2008 2 3 $100,000,000  $121,000,000  28 186 72 1 

TN Mount Juliet 12,366 5/11/2003 1 0 $500,000  $585,000  16 47 28 1 

TN Murfreesboro 68,816 3/28/2009 1 0 $4,000,000  $4,000,000  21 58 35 1 

TN Murfreesboro 68,816 4/10/2009 4 2 $40,200,000  $54,200,000  21 788 129 1 

TN Nashville 545,524 2/13/2000 0 0 $0  $0  22 0 0 0 

TN Nashville 545,524 4/20/2000 1 0 $20,000  $24,800  22 0 1 1 

TN Nashville 545,524 5/26/2000 1 0 $100,000  $100,000  22 0 2 1 

TN Nashville 545,524 5/11/2003 1 0 $500,000  $500,000  22 1 4 1 

TN Nashville 545,524 4/2/2009 1 0 $500,000  $585,000  22 1 5 1 

TN Nashville 545,524 10/9/2009 1 0 $500,000  $620,000  22 1 5 1 

TN New Tazewell 2,871 4/3/2007 1 0 $425,000  $442,000  30 154 68 1 

TN New Tazewell 2,871 4/26/2007 1 0 $1,200,000  $1,248,000  30 435 115 1 

TN Newbern 2,988 5/4/2003 1 0 $25,000  $29,250  29 10 17 1 

TN Newbern 2,988 4/2/2006 3 16 $20,000,000  $133,400,000  29 44645 1141 4 

TN Paris 9,763 10/18/2004 1 0 $800,000  $936,000  32 96 56 1 

TN Paris 9,763 11/15/2005 2 0 $6,500,000  $7,085,000  32 726 153 1 
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TN Ramer 354 5/31/2001 1 0 $100,000  $122,000  27 345 96 1 

TN Rutherford 1,272 4/2/2006 3 2 $15,000,000  $30,050,000  30 23624 843 4 

TN Sardis 445 4/7/2006 1 0 $40,000  $42,800  26 96 50 1 

TN Spencer 1,713 11/10/2002 2 0 $75,000  $89,250  30 52 39 1 

TN Springfield 14,329 5/4/2003 1 0 $3,200,000  $3,744,000  27 261 84 1 

TN Tracy City 1,679 5/30/2004 1 0 $30,000  $33,900  28 20 24 1 

TN Trenton 4,683 5/8/2003 1 0 $25,000  $29,250  30 6 14 1 

TN Walterhill 1,523 5/11/2003 3 0 $1,800,000  $2,106,000  17 1383 153 1 

TX Allen 43,554 4/10/2008 1 0 $10,000,000  $10,000,000  15 230 58 1 

TX Amarillo 173,627 10/23/2000 0 0 $15,000  $18,600  26 0 2 1 

TX Aransas Pass 8,138 9/29/2007 1 0 $250,000  $260,000  32 32 32 1 

TX Arlington 332,969 3/28/2000 0 0 $100,000  $104,000  21 0 3 1 

TX Arlington 332,969 4/3/2007 3 4 $500,000,000  $648,000,000  21 1946 202 2 

TX Austin 656,562 11/15/2001 0 0 $15,000  $18,300  20 0 1 1 

TX Austin 656,562 11/15/2001 0 0 $30,000  $36,600  20 0 1 1 

TX Austin 656,562 11/15/2001 1 0 $80,000  $97,600  20 0 2 1 

TX Austin 656,562 11/15/2001 1 0 $100,000  $122,000  20 0 2 1 

TX Beaumont 113,866 10/13/2001 1 0 $1,000,000  $1,220,000  28 11 17 1 

TX Beaumont 113,866 8/18/2009 1 0 $20,000,000  $20,000,000  28 176 70 1 

TX Belton 14,623 4/25/2008 0 0 $0  $0  28 0 0 0 

TX Benbrook 20,208 4/13/2007 0 0 $150,000  $156,000  19 8 12 1 

TX Brady 5,523 5/14/2008 0 0 $250,000  $250,000  36 45 40 1 

TX Bryan 65,660 10/12/2001 1 0 $60,000  $73,200  28 1 6 1 

TX Cactus 2,538 4/21/2007 2 0 $1,400,000  $1,456,000  31 574 134 1 

TX Canton 3,292 4/29/2006 0 0 $10,000  $10,700  28 3 10 1 

TX Canton 3,292 5/2/2008 1 0 $300,000  $300,000  28 91 50 1 
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TX College 
Station 

67,890 6/13/2003 0 0 $1,000  $1,170  23 0 1 1 

TX Colleyville 19,636 2/10/2009 1 0 $750,000  $750,000  12 38 21 1 

TX Colorado City 4,281 9/25/2003 1 0 $250,000  $292,500  35 68 49 1 

TX Cool 162 6/12/2009 0 0 $0  $0  27 0 0 0 

TX Copperas 
Cove 

29,592 6/17/2007 0 0 $100,000  $104,000  26 4 9 1 

TX Corpus Christi 277,454 10/24/2002 0 0 $50,000  $50,000  26 0 2 1 

TX Corpus Christi 277,454 3/18/2008 1 1 $85,000,000  $108,150,000  26 390 101 1 

TX Corsicana 24,485 4/27/2009 1 0 $100,000  $100,000  31 4 11 1 

TX Cross Roads 603 4/24/2007 0 0 $40,000  $41,600  13 69 30 1 

TX Crowell 1,141 4/30/2000 0 0 $0  $0  35 0 0 0 

TX Dallas 1,188,580 4/13/2007 0 0 $50,000  $52,000  24 0 1 1 

TX Dayton 5,709 10/12/2001 0 0 $40,000  $48,800  27 9 15 1 

TX Del Rio 33,867 5/27/2004 0 0 $0  $0  32 0 0 0 

TX Del Rio 33,867 4/23/2007 0 0 $0  $0  32 0 0 0 

TX Denison 22,773 12/8/2008 2 0 $750,000  $750,000  29 33 31 1 

TX DeSoto 37,646 4/10/2008 0 0 $1,000,000  $1,000,000  21 27 23 1 

TX Detroit 776 6/10/2009 0 0 $0  $0  34 0 0 0 

TX Douglassville 175 4/23/2000 2 0 $0  $0  22 0 0 0 

TX Elbert 56 4/30/2000 1 0 $200,000  $248,000  22 4429 309 2 

TX Flower Mound 50,702 4/24/2007 1 0 $100,000  $104,000  14 2 5 1 

TX Galveston 57,247 7/5/2007 0 0 $30,000  $31,200  28 1 4 1 

TX Galveston 57,247 8/30/2009 1 0 $500,000  $500,000  28 9 16 1 

TX Grand Prairie 127,427 3/28/2000 3 0 $0  $0  23 0 0 0 

TX Greenville 23,960 5/2/2009 0 0 $0  $0  27 0 0 0 

TX Harper 1,006 5/1/2007 0 0 $0  $0  28 0 0 0 

TX Haslet 1,134 4/17/2007 0 0 $15,000  $15,600  12 14 13 1 
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TX Hico 1,341 3/30/2002 0 0 $75,000  $89,250  32 67 46 1 

TX Hitchcock 6,386 4/18/2009 0 0 $50,000  $50,000  31 8 16 1 

TX Hondo 7,897 10/12/2001 2 0 $20,000,000  $24,400,000  29 3090 300 2 

TX Houston 1,953,631 6/21/2008 0 0 $110,000  $110,000  25 0 1 1 

TX Johnson City 1,191 11/16/2004 0 0 $0  $0  27 0 0 0 

TX Killeen 86,911 5/25/2007 1 0 $50,000  $52,000  27 1 4 1 

TX Laguna 
Heights 

1,990 11/7/2008 0 0 $0  $0  35 0 0 0 

TX Laughlin AFB 2,225 5/27/2004 0 0 $0  $0  22 0 0 0 

TX Leary 555 4/10/2008 2 0 $1,000,000  $1,000,000  28 1802 224 2 

TX Lewisville 77,737 6/10/2009 1 0 $200,000  $200,000  19 3 7 1 

TX Lubbock 199,564 5/29/2006 0 0 $0  $0  27 0 0 0 

TX Lubbock 199,564 4/17/2007 0 0 $0  $0  27 0 0 0 

TX Lubbock 199,564 5/14/2008 0 0 $75,000  $78,000  27 0 3 1 

TX Lubbock 199,564 8/26/2009 0 0 $100,000  $100,000  27 1 4 1 

TX Lufkin 32,709 12/23/2009 3 0 $10,000,000  $10,000,000  29 306 94 1 

TX Lumberton 8,731 10/28/2002 1 0 $100,000  $119,000  20 14 16 1 

TX McGregor 4,727 3/30/2007 0 0 $50,000  $52,000  31 11 18 1 

TX McGregor 4,727 6/25/2007 1 0 $500,000  $520,000  31 110 58 1 

TX McKinney 54,369 4/10/2008 1 0 $2,000,000  $2,000,000  17 37 25 1 

TX New Boston 4,808 5/14/2003 2 0 $0  $0  34 0 0 0 

TX New Boston 4,808 11/29/2009 1 0 $0  $0  34 0 0 0 

TX New Braunfels 36,494 11/15/2001 0 0 $0  $0  24 0 0 0 

TX Perryton 7,774 4/6/2001 1 0 $500,000  $610,000  25 78 45 1 

TX Poynor 314 12/29/2006 1 0 $2,000,000  $2,140,000  25 6815 415 3 

TX San Angelo 88,439 4/9/2008 1 0 $6,000,000  $6,000,000  28 68 43 1 

TX San Antonio 1,144,646 7/15/2007 1 0 $50,000  $52,000  27 0 1 1 



 208 

State Community Population Date EFS Deaths Damage Damage 
Component 

Vulnerability 
Score 

Damage 
Score 

TICV TC 

TX San Marcos 34,733 1/13/2007 1 0 $50,000  $52,000  27 2 6 1 

TX Seabrook 9,443 6/3/2009 0 0 $0  $0  15 0 0 0 

TX Shoreacres 1,488 3/30/2002 3 0 $350,000  $416,500  14 280 62 1 

TX Snyder 10,783 4/23/2008 1 0 $20,000  $20,000  31 2 8 1 

TX Stafford 15,681 11/17/2003 2 0 $300,000  $351,000  20 22 21 1 

TX Stephenville 14,921 12/29/2006 0 0 $15,000  $16,050  27 1 5 1 

TX Stonewall 469 10/12/2001 3 0 $1,000,000  $1,220,000  26 2601 259 2 

TX Tulia 5,117 4/21/2007 2 0 $2,000,000  $2,080,000  30 406 111 1 

TX Tuscola 714 3/4/2004 2 0 $800,000  $904,000  23 1266 171 1 

TX Whitesboro 3,760 4/9/2008 0 0 $0  $0  29 0 0 0 

TX Wichita Falls 104,197 4/10/2001 1 0 $150,000  $183,000  26 2 7 1 

TX Winnsboro 3,584 5/14/2008 1 0 $0  $0  28 0 0 0 

TX Wylie 15,132 3/30/2007 0 0 $500,000  $520,000  18 34 25 1 

UT Vernal 7,714 8/6/2009 0 0 $1,000  $1,000  28 0 2 1 

UT Willard 1,630 5/3/2009 0 0 $25,000  $25,000  17 15 16 1 

VA Bedford 6,299 4/28/2002 1 0 $1,000,000  $1,190,000  29 189 75 1 

VA Charlottesville 45,049 5/13/2000 1 0 $0  $0  24 0 0 0 

VA Chesapeake 199,184 5/4/2009 0 0 $10,000  $10,000  19 0 1 1 

VA Chester 17,890 8/30/2004 0 0 $5,000  $5,650  19 0 2 1 

VA Claremont 343 4/28/2008 1 0 $74,000  $74,000  21 216 68 1 

VA Colonial 
Heights 

16,897 4/28/2008 1 0 $2,000,000  $2,000,000  21 118 50 1 

VA Elkton 2,042 8/2/2008 0 0 $0  $0  24 0 0 0 

VA Fredericksburg 19,279 9/17/2004 0 0 $0  $0  22 0 0 0 

VA Front Royal 13,589 9/17/2004 0 0 $0  $0  26 0 0 0 

VA Hurt 1,276 7/17/2009 1 0 $0  $0  25 0 0 0 

VA Laurel 14,875 6/15/2001 0 0 $5,000  $6,100  19 0 3 1 
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State Community Population Date EFS Deaths Damage Damage 
Component 

Vulnerability 
Score 

Damage 
Score 

TICV TC 

VA Leesburg 28,311 11/5/2003 0 0 $200,000  $234,000  17 8 12 1 

VA Lovettsville 853 5/25/2004 0 0 $1,000  $1,130  17 1 5 1 

VA Richmond 197,790 9/8/2004 0 0 $5,000  $5,650  26 0 1 1 

VA Roanoke 94,911 6/3/2008 0 0 $350,000  $350,000  28 4 10 1 

VA Stanley 1,326 6/3/2009 1 0 $0  $0  30 0 0 0 

VA Stanleytown 1,515 9/17/2004 2 0 $53,800,000  $60,794,000  25 40128 994 4 

VA Suffolk 63,677 6/1/2001 1 0 $0  $0  22 0 0 0 

VA Verona 3,638 5/9/2003 0 0 $0  $0  21 0 0 0 

VA Virgilina 159 4/28/2008 1 0 $0  $0  24 0 0 0 

VA Warrenton 6,670 5/7/2003 1 0 $12,000  $14,040  21 2 7 1 

VA Winchester 23,585 9/17/2004 2 0 $0  $0  23 0 0 0 

WA Dayton 2,655 1/16/2000 1 0 $100,000  $124,000  29 47 37 1 

WI  Clear Lake 1,051 6/11/2005 0 0 $0  $0  25 0 0 0 

WI  Fitchburg 20,501 5/30/2003 0 0 $0  $0  16 0 0 0 

WI  Fitchburg 20,501 8/18/2005 3 0 $0  $0  16 0 0 0 

WI  Fort Atkinson 11,621 8/13/2002 0 0 $5,000  $5,950  21 1 3 1 

WI  Fort Atkinson 11,621 8/18/2005 1 0 $355,000  $386,950  21 33 26 1 

WI  Gilman 474 9/2/2002 2 0 $3,900,000  $4,641,000  24 9791 489 3 

WI  Kenosha 90,352 1/7/2008 0 0 $0  $0  23 0 0 0 

WI  Kenosha 90,352 6/19/2009 1 0 $7,900,000  $7,900,000  23 87 45 1 

WI  Ladysmith 3,932 9/2/2002 3 0 $25,000,000  $29,750,000  29 7566 471 3 

WI  Lake 
Koshkonong 

1,219 8/18/2005 1 0 $30,000  $32,700  14 27 19 1 

WI  Madison 208,054 6/23/2004 1 0 $1,500,000  $1,695,000  18 8 12 1 

WI  Markesan 1,396 6/23/2004 3 1 $675,000  $7,762,750  21 5561 340 2 

WI  Merrimac 416 8/18/2005 0 0 $5,000  $5,450  22 13 17 1 

WI  Montello 1,397 6/23/2004 2 0 $1,000,000  $1,130,000  26 809 146 1 
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State Community Population Date EFS Deaths Damage Damage 
Component 

Vulnerability 
Score 

Damage 
Score 

TICV TC 

WI  Muscoda 1,453 8/18/2005 1 0 $100,000  $109,000  28 75 46 1 

WI  Siren 988 6/18/2001 3 2 $10,000,000  $26,200,000  30 26518 887 4 

WI  Spring Green 1,444 8/18/2005 1 0 $7,000  $7,630  19 5 10 1 

WI  Stoughton 12,354 8/18/2005 1 1 $409,000  $7,409,000  20 600 110 1 

WI  Stoughton 12,354 6/7/2008 3 0 $7,700,000  $8,393,000  20 679 117 1 

WI  Verona 7,052 5/30/2003 0 0 $0  $0  15 0 0 0 

WI  Viola 667 8/18/2005 2 0 $1,600,000  $1,744,000  29 2615 275 2 

WI  Waupun 10,718 6/23/2004 3 0 $3,000,000  $3,390,000  19 316 77 1 

WI  Zoar 124 6/7/2007 3 0 $2,700,000  $2,808,000  27 22645 776 4 

WY Antelope 
Valley-

Crestview 

1,642 6/12/2001 0 0 $0  $0  14 0 0 0 

WY Laramie 27,204 5/22/2008 2 0 $300,000  $300,000  23 11 16 1 

WY Newcastle 3,065 6/9/2001 0 0 $0  $0  28 0 0 0 

WY Slater 82 5/23/2008 0 0 $0  $0  12 0 0 0 

WY Sleepy Hollow 1,177 6/12/2001 0 0 $0  $0  16 0 0 0 
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Appendix C - List of Acronyms Used 

Table C.1: Acronyms used within this research. 

 

AHP  Analytical Hierarchy Process 

AIS Abbreviated Injury Scale 

AQI Air Quality Index 

BMI Body Mass Index 

BTI Baron Tornado Index 

CST  Central Standard Time 

CVI Coastal Vulnerability Index 

DI19 Damage Indicator 

Damage Index 

DII Disaster Impact Index 

DOD Degrees of Damage 

DPI Damage Potential Index 

DRI Disaster Risk Index 

EFS Enhanced Fujita scale 

EM-DAT Emergency Events Database 

ESI Environmental Sustainability Index 

ESRI Environmental Systems Research Institute 

FEMA Federal Emergency Management Agency 

GDP Gross Domestic Product 

GIS Geographic Information System 

HAZUS-MH Hazards United States-Multi-Hazard 

                                                 
19 The acronym DI is used to refer to “Damage Indicators” in reference to the Enhanced Fujita 
Scale (e.g., Wind 2004; Potter 2007, Table 2.1) as well as the “Disaster Index” of Gardoni and 
Murphy (2010) (Equation 2.3).  Usage and reference is obvious within the text. 
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HP Hazards-of-Place Model 

HVI Hurricane Vulnerability Index 

IESI Influenza Epidemic Severity Index 

II  Indicator Index 

LEED Leadership in Energy and Environmental Design 

ML Richter Scale 

MMS or MW Moment Magnitude scale 

NCDC National Climatic Data Center 

NESIS Northeast Snowfall Impact Scale 

NEXRAD Next Generation Radar 

NOAA National Oceanic and Atmospheric Administration 

NSSL National Severe Storms Laboratory 

NWS National Weather Service 

O Scale Outbreak Scale 

OIS Organ Injury Scale 

OSVI Oil Spill Vulnerability Index 

PAR Pressure and Release Model 

PCA Principal Components Analysis 

PSI Pollution Standards Index 

ReSIS Regional Snowfall Impact Scale 

RH Risk-Hazard Model 

SEIM Soil Erosion Index Model 

SOFA Statistics Open for All 

SoVI Social Vulnerability Index 

SPC Storm Prediction Center 

SPSS Statistical Program for the Social Sciences 

TC Tornado Impact-Community Vulnerability Index 

Categories 



 213 

 

TICV Tornado Impact-Community Vulnerability Index 

UN/ISDR United Nations International Strategy for Disaster 

Reduction 

UNDP United Nations Development Programme 

USD United States Dollars 

USEPA United States Environmental Protection Agency 

USGS United States Geological Survey 

USTOR2000 United States Tornadoes, 2000-2009 

UTM Universal Transverse Mercator 

VOL Value of Life 

VSL Value per Statistical Life 

WPI Water Poverty Index 
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