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Abstract

Given the recognition that not only physical processes, but also social, political, and economic aspects of hazards
determine vulnerability to and impact of an event, a classification system that addresses those factors is needed.
Current classifications for natural disasters, such as the Fujita Scale for tornadoes and the Saffir-Simpson hurricane
scale, focus on the physical properties of the event, not the impact on a community. Pre-event vulnerability to a
natural hazard is determined by factors such as age, race, income, gender, infrastructure, density of the built
environment and health of the industrial base. The behavior of residents in the community, construction quality of
shelters, and warning system effectiveness also affect vulnerability. If vulnerability is influenced by such factors,
post-event impact should be, at least in part, as well. The goal of this research was to develop the Tornado Impact-
Community Vulnerability Index (TICV) that utilizes variables such as the number of persons killed, economic
impacts, and social vulnerability to describe to the level of impact a tornado event has on community. As tornadoes
that strike unpopulated areas are often difficult to classify, even in the traditional sense, the TICV will take into
consideration only events that strike communities defined as “places” according to the U.S. Census Bureau. By
assigning a rating to the impact, this index will allow the severity of the storm to be understood in terms of its effect
on a specific community and hence its impact, rather than in terms of its physical strength.

Keywords: Tornadoes; Tornado impact; Disaster recovery;
Community vulnerability; Impact index

Introduction
Hazard researchers have long been interested in examining the

physical characteristics of extreme natural events such as tornadoes
and hurricanes. Such knowledge is essential to a complete
understanding of these events, particularly their ability to cause
damage and destruction; also, it is necessary to the creation and
promotion of sound disaster management practices [1,2]. Physical
characteristics or parameters of extreme natural events include
duration, seasonality, frequency, rate of onset, diurnal factors, and
magnitude [3]. The final physical property in this list is probably the
most important. In general, the greater the magnitude of the event, the
greater is its potential to cause fatalities, injuries, and damage to
property.

Every natural disaster has a measure of magnitude. For example,
from 1971 through 2007, tornado magnitude was measured on the
Fujita (F) Scale. This scale was introduced by Fujita [4] and ranged
from F-0 through F-5. On 1 February 2007, the Enhanced Fujita (EF)
Scale EF Scale replaced the F-Scale [5]. Although the EF Scale has the
same basic design as the original F-Scale, it was revised to better reflect
examinations of tornado damage surveys, specifically to align wind
speed more closely with associated storm damage [6]. The EF Scale, as
with the F-Scale, focuses exclusively on the physical properties of
tornadoes, not their impact on a community.

Those studying disasters have increasingly realized that the losses
stemming from a disaster do not result exclusively from the physical
aspects of the phenomenon; they can also be exacerbated or alleviated

to some degree by the dynamics of the society that was struck [1,7-10].
Researchers now believe that disasters are socially constructed events,
and as such the impact of a disaster is seen as the product of its
physical characteristics, and the social, economic, demographic and
political make-up of the affected community. Hazard researchers frame
this dynamic in the concept of social vulnerability, defined by Finch
[11] as “a measure of both the sensitivity of a population to natural
hazards and its ability to respond to and recover from the impacts of
hazards.”

The principal goal of this paper is to fill the above research gap by
developing the Tornado Impact-Community Vulnerability (TICV)
index that utilizes data such as the number of persons killed, the
monetary damage incurred, and selected social profiles of the affected
community to describe to what level a tornado event has impacted a
community. This index is based on all tornado events that occurred in
the coterminous United States from 2000 through 2009 and struck
communities with defined political boundaries, or “places” according
to the U.S. Census Bureau. More specifically, this paper presents a
method for calculating the TICV and applies the results across the U.S.
with emphasis for descriptive purposes on four selected communities.
It further seeks to examine how the TICV can serve to effectively stand
as an indicator of the level of impact for each selected community, and
how each of these communities view the event as unique to their set of
circumstances.

By assigning a rating to the impact, the TICV will allow the severity
of the storm to be understood in terms of its effect on a specific
community, rather than an absolute rating that provides only a broad,
general indication of its physical strength, and hence its impact. This
index will be useful to emergency managers and others involved in
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disaster recovery efforts who need to understand the severity with
which a tornado event has impacted a community.

The remainder of this paper first presents a review of the pertinent
literature concerning hazards and the application of vulnerability
studies and indices related to that concept. Next the methods by which
the TICV was developed are described, including its sub-components
of the damage and vulnerability scores, and the methods used to
aggregate those scores into the TICV and subsequent TICV Categories,
or TCs. Finally, those measures are evaluated through a description of
four recent tornado events and the impact on each community they
struck. Summary and conclusion are presented in the last section.

Hazard Vulnerability and Indices
In developing an index that suggests the extent to which a

community has been impacted by a disaster, it is necessary to
understand why an individual, household, or community may suffer
more or less than another as a result of a natural disaster of the same
magnitude. Hazard researchers explain the level to which these entities
may be affected by extreme events in terms of vulnerability. An
examination of the literature concerning hazard vulnerability reveals a
wide range of definitions, but a common theme emerges from these
definitions: vulnerability is the degree to which a person, group of
people, or community is at risk for harm from an extreme event
[2,12,13].

Vulnerability refers to the social, economic, physical, psychological,
and other characteristics of individuals, households, groups, or
communities in terms of their capacity to anticipate, cope with, resist,
and recover from the impact of a disaster [7]. Vulnerability is not
simply a product of the intensity or magnitude of a disaster; rather, it
evolves over a long period of time and involves a combination of
physical as well as socio-economic, demographic, and other factors,
including attributes of the built environment. It needs to be
understood in the context of social, economic, and political systems
that operate on different scales [7]. According to Bolin [14],
vulnerability concerns complex social, economic, and political
circumstances in which people’s lives are embedded, and these factors
structure the choices and opinions they have in coping with
environmental hazards.

In developing vulnerability indices on different scales, hazard
researchers have used a large number of variables. Because many of
these variables are strongly correlated, most of these researchers have
developed a composite measure of hazard vulnerability [6]. They have
examined a variety of hazard and disaster contexts identifying various
dimensions of vulnerability, along with conceptual frameworks, or
models. An examination of available vulnerability indices and models
will help in developing the TICV.

In their Pressure and Release (PAR) model, Wisner [7] posited that a
disaster occurs because people are vulnerable – that, for physical,
economic or social reasons, they are exposed and will suffer damaging
losses if a hazard strikes. This vulnerability is the result of a set of
unsafe conditions (e.g., being unable to afford safe housing, having to
engage in dangerous livelihoods, living in a location with high
incidence of hazard events), which are then nested in explanatory
fashion within dynamic pressures (e.g., lack of education, training, and
appropriate skills), and those, in turn, within what are termed root
causes (e.g., limited access to power and resources).

According to the PAR model, vulnerability is associated with a lack
of power and, accordingly, groups marginalized through poverty,
illiteracy, race, ethnicity, or immigration and minority status.
Vulnerability perspectives further claim that members of vulnerable or
disadvantaged groups suffer more from disasters because public
sources unintentionally and/or systematically discriminate against
them in the provision of disaster assistance [15-17].

Boruff [18] developed the Social Vulnerability Index (SoVI) for
environmental hazards for U.S. counties. Using 42 variables reduced
from an original set of 250 by testing for multicollinearity, principal
component analysis (PCA) was applied to discover what variables
described the most variance within the dataset. The PCA produced 11
factors that explained 76.4% of the variance across all U.S. counties.
The results showed that personal wealth (per capita income being the
dominant variable) was the highest rated factor, explaining 12.4% of
the variance in the dataset, followed by age at 11.9%, and density of
built environment (number of commercial establishments per square
mile) at 11.2%.

In order to produce the SoVI, the authors then placed the factor
scores for each county into an additive model that resulted in a
composite index score of vulnerability for each county in the U.S. and
then displayed the results as a measure of standard deviation. Lower z-
scores equate to lower levels of vulnerability and higher z-scores equate
to higher levels of vulnerability. The results showed that counties with
high density of the built environment, high degrees of racial and ethnic
inequality, and socially dependent populations all contributed to high
levels of vulnerability in a given county. Conversely, counties on the
low end of the SoVI all exhibited large Caucasian populations, as well
as wealthy and highly educated persons in suburban (less densely
populated) areas. The work of Boruff [18] illustrates a collection of a
wide range of variables narrowed down through intense statistical
calculation, with the final result, the SoVI, producing a single number
that described the potential for counties in the U.S. to be harmed by
environmental disasters.

Earlier, Mitchell [17] examined the vulnerability of Georgetown
County, South Carolina, in terms of exposure to harm from
technological and natural disasters. They used the term “place
vulnerability” and claimed that the interaction between biophysical
and social vulnerability creates the place vulnerability, which then
connects back to risk and mitigation, in that depending on the level of
vulnerability, risk is either increased or decreased, and mitigation
practices can be adjusted to lessen vulnerability. Their place
vulnerability was based on eight social and 16 environmental factors
(the frequency of 16 different environmental hazards); [1] this implies
that both place and profile of a community must be considered when
determining vulnerability. Both of the above indices were developed
for multiple hazards and did not employ a weighting scheme in their
calculation.

Another application of vulnerability indices deals with coastal
vulnerability, usually focused on the impact of hurricanes or storm
surge associated with them. Dixon [19] examined Texas Gulf Coast
communities’ vulnerability to hurricanes. Using Saffir-Simpson
intensity categories for historical hurricanes as well as population and
property value data for each county, the authors developed an additive
model resulting in five categories of risk scores and five exposure
scores. Their Hurricane Vulnerability Index (HVI) was then derived by
adding the two scores. This method illustrates an attempt to combine
not only data on events that have already occurred, but to couple those
data with the potential for harm to a county given the population and
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assumed worth of the property in that community, creating an index
value that, while time-dependent, serves to assign a measure of
potential loss in the event of a future hurricane.

Research Methods

Data sources and data extraction
Tornado-specific data included the location and length of tornado

tracks, their intersection with a community, physical area of the
affected community, the number of fatalities, and the monetary
damage inflicted. These data indicate the physical impact of the event
and were collected from the Storm Prediction Center (SPC). Injuries
were not included since there is a vast range of the effects of events on
injuries [20]. The Abbreviated Injury Scale (AIS) and Organ Injury
Scale (OIS) both rate injuries on a scale from one (minor) to six
(unsurvivable) 2008; AAST [21]. Minor injuries such as broken fingers
are recorded in the SPC data just the same as major injuries such as
head trauma that may ultimately be fatal. The SPC tornado record
provides no description or coding that indicates the severity of an
injury. Thus, the impact of an injury cannot be reasonably described
based on the methods presented here, as doing so would have
introduced a component of great uncertainty as to its overall
contribution to the index and category scheme.

Data from the 2000 U.S. census, including social, economic,
housing, and demographic characteristics, were collected from the
United States Census Bureau for all U.S. communities that experienced
at least one tornado during 2000–2009 study period. Data were also
collected from a variety of other sources, including the National
Climatic Data Center (NCDC) [22], the National Atlas, Internet-based
news articles focusing on specific tornado events or outbreaks, and
personal communication (via email or phone) with county-level
emergency management personnel.

In order to assemble an initial base map, shapefile data containing
U.S. states, 3,116 counties, and 25,148 communities was obtained from
the National Atlas, henceforward referred to as the states, county (or
counties), and community (or communities) shapefiles, respectively
[2]. Those data were imported into a geographic information system
(GIS) and projected using Albers conic equal-area, North American
Datum 1983. An equal-area projection was chosen to facilitate the
spatial analysis of the vulnerability scores via the Moran’s I test as
described further below. Equal area projections are best-suited for
those types of spatial analysis, as they best preserve the area, and
therefore, the distance between areas, which is essential to the Moran’s
I statistic.

Within a GIS, data from the states and community shapefiles were
reduced to only those attributes within the coterminous United States.
Point data containing the beginning and ending latitude and longitude
of all tornado events (herein named points) as well as line data for
26,431 U.S. tornado tracks (herein named tracks) from 1950–2009
were obtained through the SPC's GIS data portal (SPC 2010) (Figure
1). The points and tracks shapefiles were imported into a GIS and all
tornadoes that occurred before 2000 were removed; the result of 12,657
tornado events was added to the GIS document as a new shapefile
(again, named tracks), replacing the previous file of the same name.

As noted, this study considered only those tornadoes that passed
through a community with U.S. Census-defined political boundaries
that appear in the community shapefile described above. To reduce the
initial tracks subset of 12,657 tornado events from 2000–2009 down to

those events striking communities, only lines from the tracks shapefile
that intersected the community shape file were considered. Removal of
non-intersecting tracks resulted in 1,885 community-intersecting
tracks that were added to the GIS document (Figure 2).

Figure 1: Tornado Tracks, 1950–2009.

Figure 2: 1,885 Tornadoes that Intersected a Community, 2000–
2009.

The use of the methods described above presented a limitation
involving the accuracy of the SPC points and tracks shapefile and their
intersection with the community shapefile, and a problem with tracks
that passed through more than one community. Those two problems
are referred to here as the accuracy of track estimation and the track-
intersect problems, respectively. In order to properly prepare the data
set for constructing the TICV, those issue were corrected [3]. After
carefully editing and consulting with relevant emergency managers, all
tornado tracks in the dataset were associated with exactly one
community.

These procedures resulted in a final dataset of 981 usable events that
intersected a community, hereafter referred to as USTOR2000 (Figure
3). This means many tornado tracks were elimiated from inclusion in
USTOR2000 because those tracks did not pass through a community.
In another words, tornadoes that remained in unpopulated or sparsely
populated areas, or those not politically defined as “placed” by the U.S.
Census Bureau were not considered in this study. Of the 12,657 events
from 2000–2009, 981 were retained, for an overall retention percentage
in the U.S. of 7.75.
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Figure 3: 981 Tornadoes in USTOR2000.

Some states exhibited high retention values while others showed
very low values. Colorado experienced 405 tornadoes during the study
period, of which seven were retained, for a retention percentage of 1.73
– the lowest of non-zero values. Conversely, Maryland exhibited a
retention percentage of 18.82 – the highest of non-zero values. The
seemingly low retentionpercentages in some states can be attributed to
the relative dispersion of both large and small population centers
existing in those areas. In contrast, high retention percentages were
found in states with more densely populated areas, and thusly
containing more census-defined communities [23]. Tornadoes that
tounched down in seven states (Delaware, Montana, Nevada, Oregon,
Vermont, Rhode Island, and West Virgina) during the study period did
not directly affect any communities; as a result, those states showed a
retention rate of zero and were excluded from consideration, resulting
in a total of 41 states within the study area (Figure 4).

Figure 4: Study area.

Census data were collected using the 2000 U.S. Census Download
Center (Census 2010). Summary files one and three were accessed via
the Census Download Center, and 17 complete summary file tables
were downloaded. Using the program Statistical Package for the Social
Sciences (SPSS), 375 variables from those tables were placed in a
correlation matrix, to identify variables that were highly correlated and
further identify a subset of variables to be used in constructing the
community vulnerability score. A total of 19 variables were chosen to
represent community vulnerability via correlation coefficients and the
vulnerability literature as cited above, most notably, Cutter. The
variables were entered into a Microsoft Excel spreadsheet and either
used as raw values or normalized per capita by population of the

community, as percentages of the community population, or as density
functions by the size of the community in square kilometers. Variables
were then assigned descriptive names and imported into an SPSS table.

Included variables are: total housing units; percent African-
American; percent Hispanic; percent female; percent under age 5;
percent over age 65; median age; average number of people per
household; percent female householders, no husband present, with
own children; percent renter-occupied houses; percent housing units
that are mobile homes; median dollar value of owner-occupied houses;
percent population over age 25 with no high school diploma; percent
population unemployed, age 16 and older; percent population
employed in the service industry; percent households earning $75,000
per year or more; median household income; per capita income; and
percent individuals below the poverty level.

TICV calculation methods
Upon completion of the data extraction and cleaning procedures,

the data were in the proper format to calculate the TICV. This was
accomplished by: (1) calculating the damage component, consisting of
the number of fatalities and the monetary damage recorded for a
community normalized by population; (2) using principal components
analysis to calculate a community vulnerability score for each
community in the dataset; (3) combining the previous two measures to
calculate the TICV; and (4) using Jenks natural breaks to construct the
TICV Categories (TCs) based on the array of TICV values.

The number of fatalities and the monetary damage resulting from a
tornado event make up the damage component (D) of the TICV. At
least one fatality occurred in 61 (6.2%) of the 981 events in the dataset.
To convert the fatality figure for an event (if one existed) to a monetary
value, the number of fatalities resulting from a particular event was
multiplied by the mean Value per Statistical Life (VSL) of seven million
2008 USD [24,25].

The monetary damage figure per event was available both in the
tabular and GIS data taken from the SPC, although the figures
reported in the SP C GIS shape file attribute table were reported as
categorical values (1 = 1,000,000 through 1,999,999 million dollars, 2 =
2,000,000 through 2,999,999 dollars, and so on). Because of this
difference, the tabular SPC data, which reported a more accurately
estimated damage figure, was spatially joined to the tracks GIS data to
populate the damage column with that more accurate damage data. In
the case of long-track events that struck more than one community
and that were segmented into discrete tracks associated with exactly
one community, the data were taken from the NCDC record and/or
narrative, news reports, FEMA reports, county emergency managers,
or a combination of those sources. The damage figures were then
adjusted for inflation to 2008 dollars in order to maintain temporal
consistency with the VSL. The inflation-adjusted fatality figure was
then added to the inflation-adjusted damage figure and the sum
normalized by the population of community c to arrive at Dc:

Dc = [Fc (VSL)+ Ec ] / Popc

where Dc = TICV damage component for community c, Fc =
fatalities in community c, VSL = 2008 Value of Statistical Life constant
of seven million USD, Ec = monetary damage done to community c,
and Popc = 2000 U.S. Census population of community c.

The census data collected for each of the 25,148 communities in the
U.S. was imported into SPSS. All U.S. communities were used to
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produce category breaks for vulnerability into which the communities
in USTOR2000 would fall. This allowed for the vulnerability of the
communities in USTOR2000 to be represented by their vulnerability
score (as explained below) as compared to all U.S. communities, rather
than only the 981 within the TICV dataset. Proper data formats for

each of the 19 variables (Table 1) were assigned, and a principal
components analysis (PCA) was performed using varimax rotation to
produce a factor solution including only eigenvalues greater than one.
The rotated solution produced six factors that explained 71.05% of the
total variance.

Summary File - Table Table description Variable(s) used

SF1-H2 Urban and rural housing units Total housing units

SF1-P3 Race Percent African-American

SF1-P11 Hispanic or Latino, total population Percent Hispanic

SF1-P12 Sex by age, total population Percent female Percent under age 5 Percent over age 65

SF1-P13 Median age by sex, total population Median age

SF1-P17 Average household size Average number of people per household

SF1-P18 Household size, household type, and presence of own
children under 16 years of age

Percent female householders, no husband present, with own
children

SF1-H4 Tenure (household) Renter-occupied houses

SF3-H30 Units in structure (housing types) Percent housing units that are mobile homes

SF3-H76 Median value (USD), specified owner occupied housing
units

Median value, owner occupied houses

SF3-P37 Sex by educational attainment, population age 25 years
and older

Percent population over 25 years of age with no high school
diploma

SF3-P43 Sex by employment status, population age 16 years and
older

Percent population unemployed, age 16 and older

SF3-P50 Sex by occupation, employed civilian population age 16
years and older

Percent population employed in the service industry

SF3-P52 Household income Percent households earning >$75,000/yr.

SF3-P53 Median household income Median household income

SF3-P82 Per capita income Per capita income

SF3-P87 Poverty status by age Percent individuals below the poverty level

Table 1: Census data used in vulnerability calculations.

To calculate the vulnerability component for each community in
USTOR2000, census data was extracted and placed into a new
spreadsheet. The data were then arranged according to factor group
from highest to lowest eigenvalue. Using the 25,148 communities as
the rank array, which is the column of data by which an individual
value is compared in order to determine its percentile position within
that column, the percentile rank of each census datum for each
community in the community dataset was calculated.

Four of the 19 variables needed further adjustment before
proceeding with the TICV calculation: median dollar value of owner-
occupied houses, % households earning $75,000 per year or more,
median household income, and per capita income. In calculating the
percentile rank for those variables, a higher rank (closer to 1) indicates
higher vulnerability. However, an increase in percentile rank should
indicate a decrease in vulnerability, not an increase. For example,
higher median household income equates to lower vulnerability, an
inverse relationship, whereas 15 variables exhibit a direct relationship
between their rank value and an increase in vulnerability. For those

four components where an increased percentile rank score decreased
the overall vulnerability score rather than increased it, the calculated
percentile rank value was subtracted from 1.00 in order to invert the
component [26].

Each percentile rank value was then weighted with the eigenvalue
for the factor in which that component belonged, and this served as the
weighting value. For each of the six factor groups, the sum of the
weighted percentile ranks for each component within that factor group
was found. Finally, for each community in the community dataset, the
sum of each of the six factor group's weighted percentile rank sums
was found, resulting in the vulnerability component for community c.
This procedure is given by:

Vc =
k=1

6

∑ [βrank(nc )]λk
n=1

19

∑

where Vc = TICV vulnerability score component for community c,
βrank (nc) = percentile rank score of vulnerability component n in
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community c (percentile rank array = 25,148 U.S. communities, U.S.
Census, 2000), and λk = principal components analysis eigenvalue for
factor k.

Using Dc and Vc calculated as described above, the TICV is given
by:

TICVc = Dc (Vc )

where TICVc = the Tornado Impact-Community Vulnerability
Index value for community c. The array of TICV values was then
imported into the tracks shapefile attribute table in order to calculate
the category break values, on [0, 5], where zero indicates the least
impact and five indicates the most severe. Finally, Jenks [27] natural
breaks were applied to the TICV column, defining the six TCs. The
calculation process is summarized in Figure 5.

Figure 5: Calculation summary.

Results

Damage component score
At least one fatality occurred in 62 (6.3%) of the 981 events

considered in this study, with a mean occurrence of 0.23, and a
maximum of 20 (Evansville, IN, 6 November 2005). The damage
component ranged from zero to $648 million (Arlington, TX, 28
March 2000), with an approximate mean of $7 million, a median of
$75,000, a standard deviation of $32.4 million, and a variance of over
10. The damage score ranged from zero to 434,783 (Hallam, NE, 22
May 2004), with a mean of 2,292, a median of 7.98, a standard
deviation of 18,015, and a variance of 324,883,758. Nearly one-third of
the events in USTOR2000 (308 of 981) returned a damage score of
zero, resulting in a power law distribution for both the raw damage
component and the damage score.

A careful examination of the raw damage score (i.e., not yet
normalized by population) reveals that the number of fatalities in the
affected communities influences the score more than its other
component, namely monetary damage. This is an important finding
since property damages resulting from a tornado are harder to reduce
than fatalities once a warning has been issued; people can move out of
the way, structures cannot [28]. However, the monetary damage
component has influenced the raw damage score for the overwhelming
majority of the impacted communities because only 6.3% of them

experienced one or more tornado fatalities. This finding is consistent
with the relationship between tornado intensity and damage in the
United States, with stronger events generally producing greater damage
[28] and more frequently resulting in death [29,30] but occurring less
frequently [31,32]. The above finding suggests providing timely
tornado warnings and encouraging people to comply with such
warnings can reduce the damage score by reducing the number of
fatalities occurring from a given event.

Vulnerability score
The vulnerability scores displayed a normal distribution with a

minimum score of 11.33 (Hebron, TX), a maximum of 38.99 (Cotton
Plant, AR), a mean of 24.77, a median of 24.99, a standard deviation of
5.53, and a variance of 30.65. Table 2 presents vulnerability scores and
corresponding descriptors. Based on vulnerability scores, a Moran's I
test was performed to spatially display any pattern among the
communities included in USTOR2000 (Figure 6). Results show high
levels of vulnerability (Z-score standard deviation > 2.58) from east
Texas (Dallas-Fort Worth metro area) through deep southern states,
including Arkansas, Louisiana, South Carolina, Mississippi, Alabama
and Georgia. The latter three also show mostly low to moderate
resiliency, the inverse of vulnerability to natural hazards as described
by Cutter. As indicators of social vulnerability typically include race,
poverty, education, and social class, it follows that areas with higher
concentrations of African-Americans, Hispanics, the less-affluent, and
the less-educated exhibit increased levels of vulnerability. Other areas
with high Z-score values, indicating high vulnerability, include the
Minneapolis-St. Paul, MN, metro area and surrounding suburbs, the
Milwaukee WI-Chicago, IL, corridor extending to Madison, WI, and
the Baltimore, MD, metro area (Figure 6).

Figure 6: Moran’s I applied to vulnerability scores.

Vulnerability Score Range  Frequency Vulnerability Level

11–18 139 Low

19–22 230 Low-Moderate

23–26 250 Moderate

27–30 211 Moderate-High

≥ 30 151 High

Table 2: Vulnerability scores and descriptors.
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TICV score
The TICV scores ranged from zero to 2,743 (Hallam, NE, 22 May

2004), with a mean of 84.48, a median of 13.96, a standard deviation of
222.87, and a variance of 49,669. Figure 7 displays the frequency
distribution of TICV scores, with those scores grouped heavily towards
the low end, and comparatively few exceeding a score of 250. A log-log
plot of TICV scores and frequency (Figure 8) shows a pattern similar
to the damage score, again resulting in a power law distribution. This
suggests that the TICV score is heavily influenced by the damage score,
with the vulnerability score exerting a lesser influence. The standard
beta coefficients resulting from a multiple regression analysis, with
TICV score as the dependent variable and the damage and
vulnerability scores as the independents, support this suggestion. The
damage score showed a β of 0.81 while the vulnerability scored showed
a β of 0.09.

Figure 7: TICV score frequency.

A Spearman's test for linear correlation confirms this suggested
influence, with r = 0.999 (p = 0.000) and r = 0.179 (p = 0.000) for TICV
scores correlated to damage and vulnerability scores, respectively. It
could be argued that the vulnerability score is not a necessary
component of the TICV. However, the concept of vulnerability as
calculated by indicators such as those used here relate to the overall
impact on the community post-event, and does influence the TICV
score; although its influence may be less than that exerted by the
damage score, vulnerability nonetheless relates to the concept of
community impact. Vulnerability analysis results such as these can be
seen not as a measure of the direct physical impact, but rather the
overall social profile of the community; they also suggest that the
physical impact is heightened by higher vulnerability.

TICV categories
The creation of category schemes is well established and frequently

employed, as seen in some of today’s most recognizable scales (e.g., the
EF Scale for tornadoes, the Saffir-Simpson scale for hurricanes, and the
Modified Mercalli scale for earthquakes). The purpose of an index
value is to provide a meaningful measure that can be easily interpreted
[33,34]. Grouping the TICV scores into discrete categories allows those
measures to be better understood, since the initial scores were not
ordinal or ranked, but interval and not distributed normally (Figure 9),
thus displaying a grouping that presents itself as averse to quick
interpretation.

Figure 8: Log-Log, TICV score frequency.

The TICV scores were classified into six categories using Jenks
natural breaks, which seek to minimize variance within a class and
maximize variance between classes, to produce the TC (Table 3). The
categories were fit onto [0, 5] (TC0, TC1,…,TC5). The frequency of the
categories show a similar distribution to the TICV scores, as should be
expected, since the category breaks were based on those scores; the
distribution also conforms to a power law distribution (Figure 9).

Figure 9: TICV category (TC) frequency.

TICV Score Range TICV Category Impact Descriptor

0 0 Low

1–181 1 Low-Moderate

182–390 2 Moderate

391–720 3 Moderate-High

721–1,300 4 High

≥ 1,301 5 Extreme

Table 3: TICV categories (TCs).

TICV score and category relationship to fujita scale
Since the EF Scale is the standard scale by which tornado strength is

rated in the U.S. [5,35], it seemed necessary to examine the
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relationship between the EF Scale and the TICV results presented here
[9]. Spearman's rho was used to correlate EF Scale values to
vulnerability, damage, and TICV scores, and to correlate the TC to the
EF Scale in USTOR2000. The correlation between EF Scale and
vulnerability scores was low, with r = 0.137 (p = 0.000), similar to the
relationship between the vulnerability and TICV scores as shown
above. Correlating the damage scores to EF Scale values produced a
result of r = 0.535 (p = 0.000). A relatively high correlation should be
expected, since the damage score consists of actual physical damage
estimates, and wind speed estimates (EF Scale) heavily influences those
data [36]. The correlation of the TICV to the EF Scale produced an
interesting result, with r = 0.535 (p = 0.000); the same value exactly (to
three decimal places) as the correlation between the damage scores and
EF Scale values. These results suggest the damage score is the primary
driver of the TICV.

The TC was compared to EF Scale values for each event in
USTOR2000 to further examine the relationship between the two
measures. Overall, the TC scores follow the traditional magnitude
versus frequency pattern (Magnitude α 1/Frequency, which can be re-

stated here as Impact α 1/Frequency), with many events causing little
or no damage (none to light impact) and few events causing extensive
damage (heavy to devastating impact). TC0 contains 306 of the 981
events (31.2%), and TC1 contains 564 of the 981 events (57.5%). These
two categories together accounted for 88.7% of all tornado events
considered in this study. Table 4 displays the TICV category values
compared to the number of EF Scale events that occurred in that
category, as well as the percentage of the total (n = 981). TC0 consists
of events resulting from EF-0 through EF-3 events, with no EF-4 or
EF-5 resulting in a TC0 event. TC1 events resulted from EF-0 through
EF-4s, with the plurality (and near-majority) resulting from EF-1
events (256 out of 564 or 45.39%). TC2 events also resulted from EF-0
through EF-4 events, with the plurality resulting from EF-2s. TC3
events resulted from EF-1 through EF-4s, with exactly half occurring
as a result of an EF-3. TC4 events resulted from EF-2 through EF-5
events, with the majority resulting from EF-3 tornadoes (10 of 19 or
52.63%). Finally, TC5 events resulted from EF-3 through EF-5s, with
two of the four resulting from an EF-4 event.

TICV-EFS EF-0 EF-1 EF-2 EF-3 EF-4 EF-5 Totals

TC0 179 (18.25%) 88 (9.00%) 29 (2.96%) 10 (1.01%) 0 0 306 (31.20%)

TC1 188 (19.16%) 256 (26.10%) 85 (8.66%) 29 (2.96%) 6 (0.61%) 0 564 (88.70%)

TC2 1 (0.10%) 10 (1.01%) 22 (2.24%) 19 (1.94%) 4 (0.41%) 0 56 (5.71%)

TC3 0 3 (0.31%) 9 (0.92%) 16 (1.63%) 4 (0.41%) 0 32 (3.26%)

TC4 0 0 4 (0.41%) 10 (1.01%) 3 (0.31%) 2 (0.20%) 19 (1.94%)

TC5 0 0 0 1 (0.10%) 2 (0.20%) 1 (0.10%) 4 (0.41%)

Totals 368 (37.51%) 357 (36.39%) 149 (15.19%) 85 (8.66%) 19 (1.94%) 3 (0.31%) 981

Table 4: TC and EFS comparison.

Simmons et al. [25] stated that tornadoes, while generally not large
enough to affect entire regions, can still devastate small communities.
As defined by Fujita [4] and Grazulis [37], weak tornadoes (EF-0 and
EF-1) generally produced events of lesser impact; yet, in three cases, a
weak EF-1 tornado produced heavy TC3 impact (Redings Mill, MO, 15
April 2001; Poynor, TX, 29 December 2006; McIntosh, AL, 10 January
2009). EF-2 and EF-3 tornadoes were powerful enough to have caused
15 of the 25 events (60%) rated at TC4 or TC5, the two highest
categories resulting from these methods. No violent tornado (EF-4 or
EF-5) resulted in a TC0 event. But the EF-4 column shows that violent
tornadoes of that magnitude caused a wide range of impacts, ranging
from light (TC1) to devastating (TC5). While the inverse relationship
between magnitude and frequency can be seen in these results, 4 also
displays exceptions. From this it can be concluded that a tornado does
not have to be a violent EF-4 or EF-5 to have a severe or devastating
impact on a community; weaker tornadoes can inflict greater impact
than their seemingly low EF Scale values (EF-1 and/or EF-2) may
indicate.

The correlation between the TC and the EF Scale was found to be r
= 0.533 (p = 0.000), indicating a similar relationship to the EF Scale as
the TICV scores before category breaks were applied. Given the
methods presented here, and that the TC was based on the TICV
scores, this similarity in rho values was expected. In relation to the EF
Scale, the correlation between that scale and the TICV scores and the

TC indicated that while both scales provide an indicator of impact, the
TICV and TC provide a perspective of the event that the EF Scale, by
design, does not. Large tornadoes are generally linked to more damage
and deaths [28], so it follows that there should be a relationship
between the two values.

However, the purpose of this research was to construct an indicator
that describes the impact of a tornado event from a perspective unique
to the event and the community affected. While a correlation was
found, it is not strong enough to support a claim that the EF Scale and
the TICV are providing near-identical measures of the same event.
This supports the presupposition that the TICV and TC, as an
indicator specific to the social profile of, and tornado damage done to,
an individual community is unique. Furthermore, these indicators can
stand as separate from the EF Scale, as evidenced by weak tornadoes
producing heavy impact and violent tornadoes producing light impact;
the TICV and TC offer distinctive insight into the impact of a tornado
event.

Comparing and contrasting the TICV across four tornado
events
Three tornado events were chosen for further examination due to

the authors’ familiarity with those events (Greensburg, KS; Ladysmith,
WI; and Manhattan, KS), and a fourth was added to include an event
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that occurred in a region that displayed higher vulnerability scores
than the regions housing the previous three. Further, all four events
rate either as strong (EF2-3) or violent (EF4-5) on the EF Scale,
providing a backdrop to compare the difference between applying an
EF Scale rating to describe community impact as opposed to the TICV.

The Greensburg, KS, event: On 4 May 4 2007 a devastating tornado
struck Greensburg, Kansas, at approximately 9:45 CST. According to
the NCDC, the width of the funnel was 2.74 kilometers (1.7 miles)
wide. A distance measurement in a GIS revealed that Greensburg is
approximately 2.1 kilometers (1.3 miles) across at its widest point and
1.1 kilometers (0.7 miles) across at its narrowest. Total damage
resulting from the event stands at $250 million with 11 fatalities for a
damage component of $327 million. Greensburg placed in the
moderate-high category for vulnerability, and received the second
highest TICV score in the dataset (behind only Hallam, NE) at 2,440,
landing the event in the TC5 category.

The Enterprise, AL, event: At approximately 1:05 CST on 1 March
2007, a tornado entered Enterprise, Alabama, from the southwest, and
moved directly through the community. The hardest hit area of the
town was the high school, which suffered major damage to the
stadium, a partial collapse of the school’s walls, and eight students who
sought shelter inside were killed. One additional death brought the toll
to nine. Overall, 239 homes were destroyed and over 900 homes
suffered major or minor damage (NCDC 2010). The damage figure
reported by the NCDC is $250 million for a damage component of
$323 million and a damage score of 15,252. Enterprise’s community
vulnerability score came in at 23 (moderate), and the TICV score at
596, ranking this event a TC3.

The Ladysmith, WI, event: Founded along the Flambeau River in
the Wisconsin Northwoods as a railroad community in 1885,
Ladysmith has since grown to a population of 3,932 as of the 2000
census. Up until 2002, a tornado had never passed through the town.
But at 4:20 CST on 2 September 2002, a supercell produced a funnel
that made contact with the ground just a few kilometers west of the
entrance to the city. Initially rated as F0, the tornado picked up
strength as it moved east. It followed a path directly down Lake Street/
Highway 8 (the main road through town), growing from F1 up to F3
strength in the center of town, but began to weaken to F2 strength as it
moved across the river, eventually exiting Ladysmith on the east end.

The twister continued for another 15 kilometers (nine miles) before
dissipating at F0 strength a few kilometers south of the town of
Ingram; no other communities were struck by this event. The tornado
completely destroyed 40 buildings with another 159 damaged within
the community (NCDC 2010). Luckily, no one was killed, and the total
damage is recorded as $25 million for a damage component of $29.75
million, and a TICV score of 471, TC3. Ladysmith scored 29
(moderate-high) on the community vulnerability scale.

The Manhattan, KS, event: Beginning approximately 21 kilometers
(13 miles) southwest of the Manhattan city limits, a tornado moved
into the community of Manhattan, KS, at approximately 10:56 CST on
11 June 2008. A residential area suffered major damage as the tornado
passed at EF-4 strength. Along its continued path, several businesses
were severely damaged, with EF-3-level damage inflicted on the Kansas
State University campus. The tornado continued through campus
flipping vehicles, blowing out windows, and damaging trees. The
funnel dissipated within the city limits at approximately 11:03 CST. No
deaths resulted from the event, but damage was in the amount of $66
million, resulting in a damage score of 1,472. Manhattan scored low-

moderate vulnerability at 22. The TICV score stands at 181, for a rating
of TC1.

Comparing the Four events: With a low-moderate vulnerability
score, and a damage swath that was small in comparison to the
community size as a whole, there remained many persons able to assist
those who were located in the path of the tornado. The lower
vulnerability indicates a community that can absorb the loss quickly,
and begin rebuilding almost immediately. Just a year after the event, a
large majority of the homes and businesses damaged had been
repaired, and the university campus showed very few remaining signs
of the storm. When viewed alongside the Enterprise, AL, event (rated
at TC3), a tornado rated on the EF Scale as an EF-4 (the same as
Manhattan), it can clearly be seen that those two events, although
similar in physical magnitude, cannot be seen as similar in impact.
Enterprise suffered the loss of nine residents, eight of whom were
children, and much more physical damage, all with less than half of the
population (when compared to Manhattan) to absorb the loss.

Ladysmith, smaller in size than both Manhattan and Enterprise, saw
40 buildings destroyed and another 159 damaged. No deaths occurred
as a result of the 2002 tornado, but it did tally $25 million in damage.
Upon a visit to the community in January 2012, it was noted that
several lots still remain empty and unimproved, but the vast majority
of the visible impact from the event is gone. “The TC3 rating applied to
this event, in comparison to the previous two, indicates a community
that was initially hit hard by the storm, and recovery took some time,
not unlike in Enterprise, but in terms of size and resources available,
more than in Manhattan” [23].

Since the May 2007 tornado, Greensburg, KS, has been facing
difficulty in rebuilding as a “green” community [6]. As of 2013, about
half of the homes damaged remain unrepaired, and residents continue
to struggle to put the town back together. However, many new and
modern buildings are apparent in the town, such as the hospital, the
Silo Eco-home, the “Business Incubator,” and the new high school.
Approximately one-third of the residents have since moved away,
presumably permanently, which has furthered weakened the recovery
effort [38].

The Greensburg tornado score the second highest TICV score
within all of USTOR2000, and easily placed in the TC5 category, with
an impact descriptor of “devastating.” A comparison of the Manhattan,
Enterprise, and Ladysmith tornadoes to the Greensburg event
demonstrates the difference in the levels of description tied to the
TICV categories. The community of Manhattan was certainly affected
by the 2008 tornado, but not to the level as either Enterprise or
Ladysmith, as the scores of TC1 (Manhattan) and TC3 (Enterprise and
Ladysmith) show. Impact was distributed over a larger and less
vulnerable community in Manhattan, and thus, the overall impact was
lower. Greensburg, with a TC5 rating, illustrates a community that was
impacted greatly, with recovery still ongoing to this day.

Limitations, Potential Practical Applications, and
Future Research

Small-scale variability may present a barrier to implementation in
larger metropolitan areas (e.g., Dallas, Texas; Minneapolis, MN; St.
Louis, MO), as the vulnerability calculation is based on population at
the level of the city. The main issue that may be difficult to overcome is
the availability of these data on smaller scales, which might provide
more focused insight into impact in smaller geographic units [39].
Future work will include the examination of methods to scale the
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TICV down to finer scales without losing the overall spirit of this
attempt to quantify impact.

In the context of this research, the TICV may prove a useful tool for
community leaders and/or emergency responders in the immediate
aftermath of a tornado, so long as a government office, such as the city
assessor, has access to an estimated damage figure. If fatalities are
known to have occurred, they too could be used to calculate the TICV
as described in this research, or eliminated if only the spatial extent of
damage is desired. Even if the initial TICV and TC scores are revised at
a later date, the immediate preliminary estimate may provide officials
with a sense of the extent of the impact across the community. The
TICV could, however, be modified to use estimated population via
Landscan data to identify sub-sections of impacted communities.

The TICV scores and category scheme created here could be used to
provide a baseline from which officials could then create hypothetical
scenarios in which differing levels of impact occur within their
communities to examine the range of TICV scores possible. By
examining potential impact scores for communities with similar social
profiles and population sizes, officials may be better able to anticipate
the immediate need for assistance, and better determine, by
researching the recovery process of those communities, what may be in
store for them in the event of a tornado. Future research may include
relating TICV scores to recovery times, which would aid in any process
of comparing events across similar communities. An application using
one component of the TICV, the vulnerability score, may be able to
inform officials of the potential for impact as well, as the vulnerability
score provides an indication of the degree to which the population is at
risk from any wide-spread traumatic event, not only tornadoes. Finally,
as calculated using PCA, the vulnerability scores may be compared
across time (i.e., the 2000 compared to the 2010 census) to examine
increases or decreases in patterns of community vulnerability.

Future research in this area may include “re-tuning” the index to
function at finer scales, as mentioned above. In order to accomplish
this, the general framework of the index could be reused, but the
demographic data would need to be collected for areas other than
“community” in name and size (e.g., “places”, census tracts, or census
blocks). Inclusion of a “time-of-day” variable was considered in this
research, and may be re-visited, as night tornadoes are known to
increase the risk of death and injury [25,29], and vulnerability
concerning tornadoes (exposure to risk if injury and death) are
increased for nocturnal events [30]. Extension of this concept to
tornado events in countries outside of the United States is another
potential area that is being explored.

Summary and Conclusion
Scales indicating the level of physical strength of natural disasters

are commonly used to relay information such as estimated wind
speeds, atmospheric pressure, energy released, and overall size. What is
less commonly reported is the impact a particular event carries with it
and delivers to the communities struck, except for the usual news
reports that describe the destruction. As our understanding of the
human factor as a key component of disaster impact has matured, the
development of scales that attempt to quantify this impact has lagged
behind, and therefore an attempt has been made to quantify tornado
impact by constructing the Tornado Impact-Community Vulnerability
Index (TICV) and TICV Category values (TC).

Through the construction of the TICV and TC, several major
findings emerged. A tornado does not have to be physically strong or

violent to impart major impacts on a community. While wind speed is
undoubtedly an important factor in the amount of destruction that can
occur, if a tornado strikes a populated section of town, killing several,
or otherwise does a great deal of monetary damage, then the wind
speed rating becomes less of a concern than does the overall impact.
The damage component is the key driver of the TICV and TC. While
higher instances of damage are, again, inextricably linked to more
powerful events, overall impact is a major concern not only for those
affected by the event, but also for those directing recovery; weak
tornadoes can have a strong overall impact. The degree to which a
community will be affected by a tornado is also determined, in part, by
social vulnerability. While damage is the key driver, social vulnerability
affects the ability of individuals and households to recover in the wake
of a disaster.

States with a high occurrence of tornado events annually may not
necessarily record a high number of events that directly impact a
community. This was found to be a function of the density with which
communities populate the state taken together with the frequency of
tornado events. Small communities are more likely to suffer a greater
degree of impact than are larger communities, even if the events
striking both communities are of similar physical strength. Small
communities, especially those in rural areas, are often more vulnerable
to hazards and possess fewer resources from which to draw upon in
order to initiate and sustain recovery.

This research has shown that different communities can be
impacted at different levels in the wake of a tornado. Although the
inverse relationship between impact and frequency holds true here, it
is concluded that EF Scale classifications do not always relay the level
of impact realistically; the EF Scale is often times misinterpreted as an
indicator of severity. Weak tornadoes can impart heavy impact on a
community, and violent tornadoes can produce light impact. The index
presented here is intended to allow the level of impact from a tornado
event to be described. While an index value cannot be seen as the final
answer to the question of impact, it can be used to help put the event
into context. Additionally, measures such as the TICV could
potentially serve in a practical capacity, in that they could provide
information that may be of use to emergency planners and other
community officials should a disaster occur.

While some potential does exist to modify these methods, in its
present form, the TICV can be seen as an indicator of severity, and as a
measure of sensitivity as well. While many of the scores grouped in the
lowest two categories (TC0 and TC1), the category values TC2 through
TC5 show sufficient levels of increasing impact to allow them to be
categorized in a more qualitative manner, as is shown by the category
impact descriptors of moderate, heavy, severe, and devastating
respectively. While these descriptors are qualitative measures, they
serve to illustrate the use of an index of this nature: to make a difficult
situation easier to understand through the application of research into
the dynamics that make up such events.

The vulnerability scores presented here give insight into the level of
risk these communities possess pre-event, and those, in concert with
the physical impact of a tornado, provide a baseline measurement
against which future events may be mitigated. Additionally, the
vulnerability score based on the 2000 census may provide a baseline
against the 2010 census by which changes in the level of vulnerability
for these communities (or for all U.S. communities) could be
estimated. Measures such as these can also provide a window into the
advancement of issues of social justice, as social vulnerability can be
used as an indicator of access to resources.
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Research on both the physical and social aspects of the impact of
extreme weather events must continue. It is apparent that people and
their communities are an integral part of the natural world, and we
must continue to strive to understand the complex human-
environment relationship.

Should a tornado run through an abandoned town, one to which no
one has property of value, or to which no connections to that place
exist, then the impact on that “community” will be zero. However, with
population increasing every day, and more and more people moving
into non-rural communities, we are furthering the potential for
tornadoes to move through built areas where property does matter
and, people are at risk for harm [23].

The physical onset of extreme weather events cannot be avoided,
nor can the assignment of an index score mitigate against impact and
tangible loss. But it is hoped that this research can aid in bringing an
increased understanding and improved perspective on the level of
impact resulting from tornado events, regardless of their physical
magnitude.

References
1. Tobin G, Montz B (1997) Natural Hazards: Explanation and Integration.

The Guilford Press, New York.
2. Paul BK (2011) Environmental Hazards and Disasters: Contexts,

Perspectives and Management. Wiley-Blackwell.
3. Mitchell JT, Cutter SL (1997) Global Change and Environmental Hazards:

Is the World Becoming More Disastrous? Washington DC.
4. Fujita TT (1971) Proposed Characterization of Tornadoes and

Hurricanes by Area and Intensity. Satellite and Mesometeorology
Research Paper, University of Chicago, Chicago.

5. Potter S (2007) Fine-tuning Fujita. Weather wise.
6. Paul BK, Che D (2011) Opportunities and Challenges in Rebuilding

Tornado-Impacted Greensburg, Kansas as Stronger, Better, and Greener.
Geo journal 76: 93-108.

7. Wisner B, Blaikie P, Cannon T, Davis I (2004) At Risk: Natural Hazards,
People's Vulnerability and Disasters. Routledge, New York.

8. Cannon T, Mahn DM (2010) Vulnerability, Resilience and Development
Discourses in the Context of Climate Change. Natural Hazards 55:
621-635.

9. Kajitani Y, Tatano H (2014) Estimation of Production Capacity Loss Rate
after the Great East Japan Earthquake and Tsunami in 2011. Economic
Systems Research 26: 13-38.

10. Okuyama Y (2014) Disaster and Economic Structural Change: Case Study
on the 1995 Kobe Earthquake. Economic Systems Research 26: 98-117.

11. Finch C (2008) Temporal and Spatial Changes to Social Vulnerability to
Natural Hazards. Proceedings of the National Academy of Sciences 105:
2301-2306.

12. Cutter SL (1996) Vulnerability to Environmental Hazards. Progress in
Human Geography 20: 529-539.

13. Thywissen K (2006) Core Terminology of Disaster Reduction: A
Comparative Glossary. Measuring Vulnerability to Natural Hazards pp:
448-496.

14. Bolin R, Stanford L (1998) The Northridge Earthquake: Vulnerability and
Disaster. Routledge, New York.

15. Blaikie P, Cannon T, Davis I, Wisner B (1994) At Risk: Natural Hazards,
People’s Vulnerability, and Disasters. Routledge, New York.

16. Bolin R, Stanford L (1999) Constructing Vulnerability in the First World:
the Northridge Earthquake in Southern California. The Angry Earth:
Disaster in Anthropological Perspective, New York.

17. Mitchell JT, Scott MS (2000) Revealing the Vulnerability of People and
Places: A Case Study of Georgetown County, South Carolina. Annals of
the Association of American Geographers 90: 713-737.

18. Boruff BF, Shirley WL (2003) Social Vulnerability to Environmental
Hazards. Social Science Quarterly 84: 242-261.

19. Dixon RW, Fitzsimmons DE (2001) Toward a Quantified Hurricane
Vulnerability Assessment for Texas Coastal Communities. Texas Journal
of Science 53: 345-352.

20. Lee J, Loomes G, Phillips PR (1995) Valuing the Prevention of Non-fatal
Road Injuries: Contingent Valuation vs. Standard Gambles. Oxford
Economic Papers 47: 676-695.

21. (2011) Scaling System for Organ Specific Injuries. American Association
for the Surgery of Trauma.

22. (2010) State of the Climate: Tornadoes for Annual 2010. National
Climatic Data Center.

23. Stimers MJ (2011) A Categorization Scheme for Understanding
Tornadoes from the Human Perspective. Kansas State University,
Manhattan, Kansas.

24. Kniesner TJ, Viscusi WK, Zilliak JP (2010) Policy Relevant Heterogeneity
in the Value of Statistical Life: New Evidence from Panel Data Quantile
Regressions. Journal of Risk and Uncertainty 40: 15-31.

25. Simmons KM, Sutter D (2011) Economic and Societal Impacts of
Tornadoes. American Meteorological Society, Boston.

26. Flanagan BE, Gregory EW, Hallisey EJ, Heitgerd JL, Lewis B (2011) A
Social Vulnerability Index for Disaster Management. Journal of
Homeland Security and Emergency Management 8: 1-22.

27. Jenks GF (1967) The Data Model Concept in Statistical Mapping.
International Yearbook of Cartography 7: 186-190.

28. Brooks HE, Doswell CA (2001) Normalized Damage from Major
Tornadoes in the United States: 1890-1999. Weather and Forecasting 16:
168-176.

29. Simmons KM, Sutter D (2005) Protection from Nature's Fury: Analysis of
Fatalities and Injuries from F5 Tornadoes. Natural Hazards Review 6:
82-87.

30. Ashley WS (2007) Spatial and Temporal Analysis of Tornado Fatalities in
the United States: 1880-2005. Weather and Forecasting 22: 1214-1228.

31. Dotzek N, Grieser J, Brooks H (2003) Statistical Modeling of Tornado
Intensity Distributions. Atmospheric Research 67: 163-187.

32. McCarthy DW (2003) NWS Tornado Surveys and the Impact on the
National Tornado Database. F-Scale and Severe-Weather Damage
Assessment, Long Beach, CA.

33. Booysen F (2002) An Overview and Evaluation of Composite Indices of
Development. Social Indicators Research 59: 115-151.

34. Nardo M, Saisana M, Saltelli A, Tarantola S (2008) Handbook on
Constructing Composite Indicators: Methodology and User Guide.
OECD Publishing, France.

35. Doswell CE, Brooks HE, Dotzek N (2009) On the Implementation of the
Enhanced Fujita Scale in the USA. Atmospheric Research 93: 554-563.

36. Edwards R, LaDue JG, Ferree JT, Scharfenberg K, Maier C, et al. (2010)
The Enhanced Fujita Scale: Past, Present and Future. 25th Conference
Severe Local Storms, Denver CO.

37. Grazulis TP (1993) Significant Tornadoes, 1680-1991. Environmental
Films.

38. Barnhart A (2010) Three Years after Tornado, Renewal Hasn’t Come Easy
in Greensburg. The Kansas City Star.

39. Dark SJ, Bram D (2007) The Modifiable Areal Unit Problem (MAUP) in
Physical Geography. Progress in Physical Geography 31: 471-479.

 

Citation: Stimers MJ, Paul BK (2016) Toward Development of the Tornado Impact-Community Vulnerability Index. J Geogr Nat Disast 6: 161.
doi:10.4172/2167-0587.1000161

Page 11 of 11

J Geogr Nat Disast
ISSN:2167-0587 JGND, an open access journal

Volume 6 • Issue 1 • 1000161

View publication statsView publication stats

https://books.google.co.in/books/about/Natural_Hazards.html?id=RUGSoNvbMSEC&redir_esc=y
https://books.google.co.in/books/about/Natural_Hazards.html?id=RUGSoNvbMSEC&redir_esc=y
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0470660015.html
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0470660015.html
http://eric.ed.gov/?id=ED445954
http://eric.ed.gov/?id=ED445954
https://archive.org/details/nasa_techdoc_19720008829
https://archive.org/details/nasa_techdoc_19720008829
https://archive.org/details/nasa_techdoc_19720008829
http://funnel.sfsu.edu/courses/metr100.2/EFScale.pdf
http://link.springer.com/article/10.1007%2Fs10708-010-9404-4
http://link.springer.com/article/10.1007%2Fs10708-010-9404-4
http://link.springer.com/article/10.1007%2Fs10708-010-9404-4
http://www.preventionweb.net/files/670_72351.pdf
http://www.preventionweb.net/files/670_72351.pdf
http://link.springer.com/article/10.1007%2Fs11069-010-9499-4
http://link.springer.com/article/10.1007%2Fs11069-010-9499-4
http://link.springer.com/article/10.1007%2Fs11069-010-9499-4
https://www.econbiz.de/Record/estimation-of-production-capacity-loss-rate-after-the-great-east-japan-earthquake-and-tsunami-in-2011-kajitani-yoshio/10010256253
https://www.econbiz.de/Record/estimation-of-production-capacity-loss-rate-after-the-great-east-japan-earthquake-and-tsunami-in-2011-kajitani-yoshio/10010256253
https://www.econbiz.de/Record/estimation-of-production-capacity-loss-rate-after-the-great-east-japan-earthquake-and-tsunami-in-2011-kajitani-yoshio/10010256253
https://www.iioa.org/conferences/22nd/papers/files/1536.pdf
https://www.iioa.org/conferences/22nd/papers/files/1536.pdf
http://www.ncbi.nlm.nih.gov/pubmed/18268336
http://www.ncbi.nlm.nih.gov/pubmed/18268336
http://www.ncbi.nlm.nih.gov/pubmed/18268336
http://webra.cas.sc.edu/hvri/docs/Progress_Human_Geography.pdf
http://webra.cas.sc.edu/hvri/docs/Progress_Human_Geography.pdf
http://collections.unu.edu/view/UNU:2804
http://collections.unu.edu/view/UNU:2804
http://collections.unu.edu/view/UNU:2804
https://books.google.co.in/books?hl=en&lr=&id=WCWEAgAAQBAJ&oi=fnd&pg=PP1&dq=The+Northridge+Earthquake:+Vulnerability+and+Disaster.+Routledge&ots=ea92IgSHor&sig=-D0J1HWw244BVDithKCzIQVEZ2I
https://books.google.co.in/books?hl=en&lr=&id=WCWEAgAAQBAJ&oi=fnd&pg=PP1&dq=The+Northridge+Earthquake:+Vulnerability+and+Disaster.+Routledge&ots=ea92IgSHor&sig=-D0J1HWw244BVDithKCzIQVEZ2I
http://libra.msra.cn/Publication/2887855/constructing-vulnerability-in-the-first-world-the-northridge-earthquake-in-southern-california
http://libra.msra.cn/Publication/2887855/constructing-vulnerability-in-the-first-world-the-northridge-earthquake-in-southern-california
http://libra.msra.cn/Publication/2887855/constructing-vulnerability-in-the-first-world-the-northridge-earthquake-in-southern-california
http://www.geo.mtu.edu/volcanoes/06upgrade/Social-KateG/Attachments%20Used/SpatialDimensionVulnerability.pdf
http://www.geo.mtu.edu/volcanoes/06upgrade/Social-KateG/Attachments%20Used/SpatialDimensionVulnerability.pdf
http://www.geo.mtu.edu/volcanoes/06upgrade/Social-KateG/Attachments%20Used/SpatialDimensionVulnerability.pdf
http://onlinelibrary.wiley.com/doi/10.1111/1540-6237.8402002/abstract
http://onlinelibrary.wiley.com/doi/10.1111/1540-6237.8402002/abstract
http://oep.oxfordjournals.org/content/47/4/676.extract
http://oep.oxfordjournals.org/content/47/4/676.extract
http://oep.oxfordjournals.org/content/47/4/676.extract
https://krex.k-state.edu/dspace/handle/2097/8531
https://krex.k-state.edu/dspace/handle/2097/8531
https://krex.k-state.edu/dspace/handle/2097/8531
http://surface.syr.edu/cgi/viewcontent.cgi?article=1047&context=cpr
http://surface.syr.edu/cgi/viewcontent.cgi?article=1047&context=cpr
http://surface.syr.edu/cgi/viewcontent.cgi?article=1047&context=cpr
http://link.springer.com/book/10.1007%2F978-1-935704-02-7
http://link.springer.com/book/10.1007%2F978-1-935704-02-7
http://gis.cdc.gov/grasp/svi/A%20Social%20Vulnerability%20Index%20for%20Disaster%20Management.pdf
http://gis.cdc.gov/grasp/svi/A%20Social%20Vulnerability%20Index%20for%20Disaster%20Management.pdf
http://gis.cdc.gov/grasp/svi/A%20Social%20Vulnerability%20Index%20for%20Disaster%20Management.pdf
http://www.scopus.com/record/display.uri?eid=2-s2.0-84894886353&origin=inward&txGid=0
http://www.scopus.com/record/display.uri?eid=2-s2.0-84894886353&origin=inward&txGid=0
http://www.nssl.noaa.gov/users/brooks/public_html/damage/tdam1.html
http://www.nssl.noaa.gov/users/brooks/public_html/damage/tdam1.html
http://www.nssl.noaa.gov/users/brooks/public_html/damage/tdam1.html
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%291527-6988%282005%296%3A2%2882%29?journalCode=nhrefo
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%291527-6988%282005%296%3A2%2882%29?journalCode=nhrefo
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%291527-6988%282005%296%3A2%2882%29?journalCode=nhrefo
http://journals.ametsoc.org/doi/abs/10.1175/2007WAF2007004.1
http://journals.ametsoc.org/doi/abs/10.1175/2007WAF2007004.1
http://www.nssl.noaa.gov/users/brooks/public_html/papers/dotzekgrieserbrooks.pdf
http://www.nssl.noaa.gov/users/brooks/public_html/papers/dotzekgrieserbrooks.pdf
http://www.spc.noaa.gov/publications/mccarthy/f-scale.pdf
http://www.spc.noaa.gov/publications/mccarthy/f-scale.pdf
http://www.spc.noaa.gov/publications/mccarthy/f-scale.pdf
http://www.jstor.org/stable/27527024
http://www.jstor.org/stable/27527024
http://www.oecd.org/els/soc/handbookonconstructingcompositeindicatorsmethodologyanduserguide.htm
http://www.oecd.org/els/soc/handbookonconstructingcompositeindicatorsmethodologyanduserguide.htm
http://www.oecd.org/els/soc/handbookonconstructingcompositeindicatorsmethodologyanduserguide.htm
http://elib.dlr.de/59709/1/dos.pdf
http://elib.dlr.de/59709/1/dos.pdf
http://www.spc.noaa.gov/publications/edwards/ef-mtg.pdf
http://www.spc.noaa.gov/publications/edwards/ef-mtg.pdf
http://www.spc.noaa.gov/publications/edwards/ef-mtg.pdf
https://books.google.co.in/books/about/Significant_Tornadoes_1680_1991.html?id=A8NbPwAACAAJ&redir_esc=y
https://books.google.co.in/books/about/Significant_Tornadoes_1680_1991.html?id=A8NbPwAACAAJ&redir_esc=y
http://www.kansasenergy.org/greensburg.htm
http://www.kansasenergy.org/greensburg.htm
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.620.9529&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.620.9529&rep=rep1&type=pdf
http://dx.doi.org/10.4172/2167-0587.1000161
https://www.researchgate.net/publication/298215533

	Contents
	Toward Development of the Tornado Impact-Community Vulnerability Index
	Abstract
	Keywords:
	Introduction
	Hazard Vulnerability and Indices
	Research Methods
	Data sources and data extraction
	TICV calculation methods

	Results
	Damage component score
	Vulnerability score
	TICV score
	TICV categories
	TICV score and category relationship to fujita scale
	Comparing and contrasting the TICV across four tornado events

	Limitations, Potential Practical Applications, and Future Research
	Summary and Conclusion
	References


